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Abstract

To realize quality microgravity science on the International Space Station, many

microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation

capabilities incorporating ARIS will be needed to predict the microgravity environment

to be realized at the various science locations. This paper discusses the development of a

simulation tool for use in predicting the performance of the ARIS in attenuating

disturbances with frequency content between 0.01 Hz and 10 Hz. The development of a

six degree-of-freedom dynamic model of a microgravity facility, built into an

International Standard Payload Rack, is presented. The derivation of this model utilizes

an energy-based approach. The complete simulation includes the dynamic model of the

ISPR integrated with the model for the ARIS controller so that the entire closed-loop

system is simulated. Preliminary performance predictions are made for the AR.IS in

attenuating both off-board (station) disturbances as well as disturbances from hardware

mounted onboard the microgravity facility. These predictions suggest that the ARIS does

eliminate resonant behavior detrimental to microgravity experimentation. A limited

comparison is made between the simulation predictions of AR.IS attenuation of off-board

disturbances and results from a recent ARIS flight test that was flown on the Space

Shuttle. These comparisons show promise, but further tuning of the simulation is needed.

The simulation capability presented in this paper is not intended to provide flight-by-

flight analysis but rather a means to augment technical understanding of ARIS and to

support system studies.
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1. Introduction

One of the primary missions of the Intcmational Space Station ('ISS) will be to

support scientific research in a microgravity environment. This mission statement

implies that an environment must be established and maintained on ISS in which body

forces on the various microgravity experiments are reduced to acceptable levels. Many of

the physical processes that will be investigated in these experiments are very sensitive to

body force disturbances. If the proper environment is not realized, the experiment

objective will be compromised. Due to the inherent disturbances on any manned space

platform, realizing this environment on the station poses a technical challenge that will

require on-orbit vibration isolation of the experiments.

The planned strategy for providing an acceptable environment for ISS

experiments cun'ently involves the Active Rack Isolation System (ARIS), under

development by the Boeing Defense and Space Group. The ARIS is a Space Station

subsystem that provides an isolated platform on which microgravity experiments may be

mounted. In its most common confgurafion, the system utilizes an International

Standard Payload Rack (ISPR) as the mounting platform and a combination of

acceleration, stiffness compensation and position control loops for active isolation of the

ISPR from unwanted disturbances.

In order that the ARIS be utilized to its full potential, an understanding of system

performance among microgravity payload developers, research management, and the

microgravity community is important. Since the ARIS represents a new technology that

has not yet been utilized for vibration isolation, many questions related to ARIS



performanceremain unanswered. An understanding of the impact of payload

configuration to ARIS performance, for example, may lead to methods that can improve

the microgravity environment to be realized on orbit. One of the ways to augment such

technical knowledge of the ARIS is through computer-based simulation.

The major objective of this research is to build and validate a simulation

capability for the ARIS. To meet this major objective, a number of smaller objectives

must be realized. Firstly, a firm understanding of the rigid-body dynamics of an ISPR, or

microgravity rack, must be established. This is accomplished through a detailed

analytical treatment, leading to the subsequent derivation of the rigid-body equations of

motion for a microgravity rack in orbit about the Earth. The dynamic model of the ISPR

used in the simulation presented in this paper is very similar to that used in a Boeing

ARIS simulation. However, to the author's knowledge, such a comprehensive and

detailed treatment of the microgravity rack dynamics has not been documented

previously.

A second important step in building the current simulation capability is the

implementation of an ARIS controller simulation that is then integrated with the dynamic

model for the microgravity rack. The simulation tool presented in this paper is based

heavily on an ARIS simulation capability currently used by the Boeing Defense and

Space Group. In developing the simulation capability presented in this paper, an effort

was made to replicate the Boeing controller simulation to the greatest extent possible.

This effort represents a first important step in acquiring a valid simulation tool because it

lays the groundwork for a simulation architecture that can be utilized to carry out system



studies.Using such a simulation, end users of the ARIS can augment their knowledge of

the system and assess the impact of unique facility configurations to ARIS performance.

To validate the current simulation capability, results from the simulation are

compared to results from a Boeing ARIS simulation as well as to real performance data

from an ARIS flight experiment (flown on a recent shuttle mission). Comparison to

results from the Boeing simulation helps to ensure that all of the important control

elements are simulated. Comparison of results with real flight data is the final word on

whether the simulation is an adequate predictor of ARIS performance.

This paper is divided into ten chapters. After the introduction in Chapter 1,

Chapter 2 discusses reasons that vibration isolation is needed if quality microgravity

science is to be realized on ISS. Chapter 3 provides a basic problem statement for

vibration isolation on orbit, a discussion of general isolation strategies, and a detailed

description of the ARIS configuration. Chapter 4 describes the system to be modeled, the

application of the energy method as it relates specifically to the system under

consideration, and a first step in formulating the quantities needed to derive the system

equations of motion. In Chapter 5 the orbital equations of motion for the composite

center of mass are derived, and shown to take the form of the familiar set of equations for

the two-body problem, with the addition of a forcing function. Chapter 6 discusses the

choice of generalized coordinates to describe the local perturbed motion of the

microgravity rack, and expands energy functions formulated in Chapter 4 in terms of

these generalized coordinates.

microgravity rack are derived.

In Chapter 7 the perturbed equations of motion for the

This chapter provides a detailed description of all terms

appearing in the equations of motion and ways to rewrite and simplify these equations.

3



Chapter 8 introduces the computerized version of the simulation. Details of the ARIS

controller simulation are given in this chapter and predictions of the steady state response

for the system (in the form of transfer functions) are shown for both the passive system

(ARIS inactive) and the active system (ARIS active). Chapter 9 describes the ARIS Risk

Mitigation Experiment (RME), an ARIS flight experiment conducted on a recent Space

Shuttle mission. The simulation version used to simulate the RME configuration is

described and a limited comparison between simulation results and actual flight data is

shown. Concluding remarks that summarize the model development and simulation

results are given in Chapter 10.

Figure 1 shows a flowchart for the information presented in this paper. The

blocks in bold outline represent each of the ten chapters (with the appendices also

represented) and the arrows represent the flow of information from one chapter to the

next. A brief description of the most significant information passed between chapters is

also given.

4
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2. The Microgravity Environment and the Science Return

In the this paper, and consistent with the definition in reference 3, the term

microgravity enviroment does not denote a gravity environment at one particular g-

level. Instead, the term is used to refer to a general, low-gravity environment, such as

that realized on any orbiting space platform. To address the feasibility ofmicrogravity

science on ISS, the expected microgravity environment must be characterized and

compared to a microgravity requirement deemed suitable for the planned scientific

activities. The following discussion describes the typical enviroment on current manned

orbiters and shows that the ISS enviroment will need to be enhanced if quality

microgravity science is to be realized.

2.1 Typical Environment on Manned Orbiters

Although the enviroment insideorbitingbodies such as the Space Shuttleis

many times describedasweightless,the accelerationof objectsrigidlymounted tothe

space platform'sstructureexceeds levelsconducive to microgravityscienceactivities.

Mounted accelerometersflown on the Space Shuttleand Skylab have recorded

accelerationswith magnitudes on the order of 10-2go [I].The symbol godenotes the

accelerationduc to gravityatthe earth'ssurface.These unsatisfactoryaccelerationlevels

arca resultof body forcedisturbancesthatarealways presenton the vehicleand have

ultirnatclyreduced the value of the sciencereturnon pastmissions [2].

The accelerationlevelsseen inthe space platform'sstructurearc the resultof

disturbancesources inherenttothe vehicleand itsorbit.These disturbanccsourcescan



be divided into three major groups [1,3]. One group consists of sudden, transient-type

disturbances, which include propulsive maneuvers, the closing of a hatch by a crew

member, and other similar events. Another group includes vibratory disturbances -

disturbance sources that last for a duration of time and oscillate with frequencies in the

range of 0.01 Hz to 300 Hz. Among other things, vibratory disturbance sources include

treadmills and other rotating machinery mounted onboard the vehicle. The third group

consists of the quasi-steady disturbances - disturbances acting on the vehicle at a

sustained force level for a duration of minutes. The major disturbances in this third group

are atmospheric drag and gravity gradient. These various disturbance sources transmit

forces into the vehicle, which ultimately results in an unacceptable environment in which

to conduct microgravity science activities. The primary concern of this study is the

prediction of the vibratory disturbance attenuation capability of the ARIS.

2.2 The Microgravity Requirement for Vibratory Disturbances

The microgravity requirement for steady state vibratory acceleration disturbances

is shown in Figure 2 (reference 4). The requirement is defined according to the needs of

the scientific community. The requirement curve is the result of a compilation of

individual requirements for microgravity experimentation across several disciplines.

The current requirement effectively restricts the vibrational disturbance energy

that may be present in the environment onboard the vehicle. The requirement consists of

forty-five points located at the center frequencies of 1/3 octave bands, which span the

frequency spectrum from 0.01 Hz to 300 Hz. The requirement sets a limit on the RMS

level of the cumulative disturbance environment across finite frequency intervals of 1/3



octave.To meet the requirement within a given 1/3 octave band, the RMS level ofthe

cumulative oscillatory disturbance in that band cannot exceed the value of the

requirement at the center frequency of the given 1/3 octave band.

10_ ..................................

10_

::L

10_
<

oooO

000000

ooooo°°°
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Figure 2: Vibratory RMS Acceleration Limit for Microgravity Experiments per 1/3
Octave Band

Generally the physical processes important to microgravity experiments are most

sensitive to acceleration disturbances in the low frequency range [1]. Therefore, the

microgravity requirement is most stringent at low frequencies, demanding that the RMS

level of the cumulative disturbance to which the experiment is subjected be no greater

than 1 micro-g. The increase in the allowable acceleration disturbance with increasing

frequency reflects the higher tolerance of the physical processes to high frequency



disturbances.At frequenciesof 100Hz andabove,experimentscanbesubjectedto RMS

levelsof onemilli-g.

2.3 Predicted ISS Vibratory Environment

In order to compare the predicted ISS environment to the requirement in Figure 2,

a 1/3 octave band RMS representation of the ISS environment must be generated. The

formulation of this representation begins with a prediction of the acceleration

environment in the time domain. An ISS acceleration enviroment prediction is currently

generated through a NASTRAN model, at the NASA Johnson Space Center, that

incorporates the structural and rigid body dynamics of ISS and the various disturbance

sources that will be present on orbit. By utilizing the power spectral density. (PSD) of the

ISS acceleration prediction, an RMS, 1/3 octave band representation is generated (private

communication, Steve Del Basso, Microgravity Analysis Integration Team (AIT), June,

1996).

Figure 3 shows the projected ISS (US Lab) acceleration environment in the 1/3

octave band representation (reference 5), plotted with the requirement shown in Figure 2.

Also shown is the projected environment at the science location when the ARIS is

utilized to attenuate the station disturbances. The projected environment takes into

account the major disturbance sources from U.S. on-orbit operations. Note that

disturbances from equipment used by international partners are not included in the

environment prediction. Figure 3 clearly shows that the ISS acceleration environment is

expected to exceed the microgravity requirement, making the use of vibration isolation at

the science locations necessary.
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3. Vibration Isolation on Orbit

Since the predicted ISS microgravity environment exceeds NASA's microgravity

requirement, a strategy for isolating the experiments fi'om ISS must be formulated.

Several different systems intended for vibration isolation of experiments on orbit have

been developed. Generally these systems attempt to create an acceptable environment

inside a rigid-walled container (such as a rack or box) that houses one or more

microgravity experiments. The position of the science container is maintained with

respect to the station within an allowable sway space. In most cases these systems

employ active feedback control to reject the detrimental disturbances that would

otherwise degrade the microgravity environment inside of the container.

Examples of isolation systems for use on orbit (other than the ARIS) include the

Suppression of Transient Accelerations by Levitation Evaluation (STABLE) system and

the Microgravity Vibration Isolation Mount (MIM). The STABLE system was designed

and built in a joint effort between McDonnell Douglas Aerospace (circa 1996) and NASA

Marshall Space Flight Center. Development of the MIM is headed by the Canadian

Space Agency. Both isolation systems employ electromagnetic actuators and active

control to isolate the scientific payload [6].

3.1 General Isolation Strategies

The general strategy for vibration isolation from a space platform is shown in

Figure 4. The Space Station and the science container are shown as two rigid bodies that

are in orbit about the Earth. In the general case, numerous science containers could be

11



utilized on ISS, ranging from foot-locker-sized boxes to payload-rack-sized facilities.

Therefore, the general situation for vibration isolation on orbit involves more than the

simple two-body problem illustrated here.

The Space Station and science container are passively coupled via an umbilical

assembly as well as by actuators, which are used to control the container motion. In some

systems, such as those employing magnetic levitation for control of the container, the

passive actuator coupling between the station and the container is not present. The

umbilical assembly coupling is generally present, however, in the form of power cords,

datatransfercables,vacuum hoses,and otherrequiredconnections.

External -_.**'l

Disturbance

Forces

Station
Disturbance""'""

Sources
(MassinMotion)

Actuators

Station

Control

", " .-" Forces .... Accelerometers

"" "" Science 11]

"-_ ..... "..... On-board
***.e

"'"" ..... Umbilical Disturbance
Sources

Assembly (Mass in Motion)

EARTH

Figure 4:VibrationIsolationon Orbit

The microgravity container must be isolated from two broad classes of

disturbances - off-board disturbances, which act on the Space Station, and onboard

disturbances, which act directly on the container itself. The off-board disturbances affect

the environment inside the container via the umbilical and actuator assemblies, which

provide a path by which station body forces can be transmitted. Internal disturbances act
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on the container through the hardware mounting interfaces, which are assumed to provide

rigid connections between the onboard equipment and the container.

The group of off-board disturbances includes forces external to the station/rack

system (such as aerodynamic drag) as well as force, s induced by mass in motion inside of

the system (such the station's rotating machinery). Onboard disturbances generally result

from the science facility's mechanical hardware. These sources may include cooling

fans, fluid pumps, tape drive data recorders, and a myriad of other devices with moving

parts. The off-board and onboard disturbances sources are represented in Figure 4.

Another source of disturbance, not depicted in Figure 4, is the gravity gradient

force. The gravity gradient force arises from the spatial separation between the science

container and the composite center of mass of the system. The science container prefers

to be in an orbit that is different than that of the composite center of mass of the system

but it is tethered to the station via the umbilical assembly. An additional acceleration is

therefore induced on the container via the umbilical connection as the container is

dragged along by the station [3,7].

To counter the effects of the disturbance sources, a control force (which reacts

against the station) is applied to the container. Although passive isolation strategies have

been contemplated for the on-orbit isolation problem, active control of the container has

been the most popular strategy. The justification for employing an active control system

is the ability of such a system to provide a low effective stiffiaess to isolate against low

frequency off-board disturbances, without need for large swayspaces, while also

providing high effective stiffness for isolation from disturbances originating within the

payload [8]. A passive isolation system cannot adapt itself to provide the same quality of
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isolation that can be realized with active control. Passive isolation systems normally

have a preset stiffness that cannot be varied in real time. For an isolation problem in

which largely contrasting stiffness properties are needed to combat different types of

disturbances, this fixed stiffness represents a true shortfall. Further, low stiffness

materials (needed for isolation against low frequency disturbances) do not provide

sufficient damping [8], which results in large oscillatory amplitudes of the microgravity

container when it is subjected to low frequency disturbances. These large amplitudes

may result in bumping between the container and the station, which would certainly

compromise the enviroment within the container.

3.2 Description of the Active Rack Isolation System (ARIS)

The ARIS is a state-of-the-art vibration isolation system. The ARIS kit consists

of a set of actuators, snubbers, acceleration and position sensors, and controller

electronics that interface with an ISPR. The ISPR serves as the science container, on

which the various microgravity experiments are mounted. In future sections of this

document, the ISPR is many times referred to simply as "the rack".

Figure 5 shows a diagram of the ARIS hardware components interfaced with an

ISPR. The production version of the ARIS employs a total of nine accelerometers

mounted in three accelerometer assemblies. Two accelerometer triad assemblies

(ACCELEROMETER #1 and ACCELEROMETER #2) are located in the bottom portion

of the ISPR and another assembly (ACCELEROMETER #3) is mounted on the top of the

rack. The orientations of the accelerometers were chosen so that redundancy is built into

the system in case of a single or double accelerometer failure.

14



UPPER SNUBBER

ACTUATOR "7

ACCELEROMETER _3

REMOTE ELECTRONICS
UNIT "3

X

ACTUATORu8

UPPER SNUBBER

ACCELEROMETER II

ACTUATOR e2

ACTUATOR tl

ACTUATOR a3

DASH 6 COLDPLATE

HARDBACK

CONTROLLER

/

REMOTE ELECTRONICS
UNIT "1

REMOTE ELECTRONICS
UffiT =2

ACCELEROMETER =2

ACTUATOR 15

ACTUATOR a6

ISOLATION PLATE

ACTUATOR "4

Figure 5: Major Components oft.he ARIS Mounted on an ISPR

(Source: ARIS Critical Design Review, Huntsville, AL, November 1996)
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The ARIS employs eight actuators, also arranged to increase system redundancy.

The actuator assembhes consist of a pushrod connected to a voice coil that receives

actuation commands from the ARIS controller. An optical position measurement device

is built into each actuator mechanism. The position measurements are used by ARIS to

maintain the swayspace between the rack and the station wall.

Although estimates of system parameters will be made prior to the launch of the

various microgravity facilities, there will be uncertainty in these parameters. To enhance

ARIS performance, the design incorporates a payload evaluator, which is a system

capable of estimating and updating parameters on orbit. Using known force inputs,

accelerometer data and position data are used to accurately determine ISPR mass, CM

location, and umbilical stiffness properties in the low-gravity environment. The AR/S

controller parameters can then be updated to account for any differences between the

parameters measured on orbit and estimates made for those parameters prior to launch.

Another hardware component used in each microgravity facility is the umbilical

assembly, shown in Figures 6 and 7. The umbilical assembly connects to the ISPR via a

mounting plate that is situated so as not to interfere with the ARIS hardware components.

As mentioned before, the umbilical assembly is necessary to provide power, data links,

and resources to the microgravity experiments and it is also the main path via which

station disturbances are transmitted to the rack. Since the presence of the umbilical

assembly greatly affects the dynamic behavior of the rack, the umbilical properties must

be modeled correctly if the rack behavior is to be successfully simulated.
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Figure 6: Location and Configuration of the Umbilical Assembly

(Source: LP/S Phase 1 IPT Status Review, August 1995)
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4. System Description and Problem Formulation

The purpose of this chapter is to provide a description of the station/rack system

that is suitable for the subsequent derivation of rigid body equations of motion. In

Chapters 5 and 7 of this paper, a Lagrangian approach is used to derive the equations.

This approach is an energy-based method that is well suited to problems involving

systems with multiple degrees-of-fi'eedom.

4.1 System Configuration

Figure 8 provides a basic description of the system, which is assumed to consist of

the station, the rack, a set of disturber masses, and a collection of elastic and dissipative

elements. Figure 8 is conceptually similar to Figure 4, but provides a more detailed

description of the system. The Space Station is represented by two figures in the left

portion of the diagram and the science container is represented by two figures in the right

portion. The science container is assumed to be an ARIS rack, although the description

given here can be extended to other isolation systems. The set of Q disturber masses

onboard the station (MQ) and the P disturber masses onboard the rack (mr) represent

small point-mass imbalances in rotating equipment such as the ISS centrifuge and the Air

Avionics Assembly (commonly known as the AAA fan). The elastic and dissipative

elements represent the umbilical assembly and conla'ol system actuators through which

the rack is tethered to the station.

Figure 8 shows the station/rack system in two different configurations. The

figures shown in dashed outlines represent the equilibrium configuration of the system.
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Theequilibriumstateis definedasthestateof thesystemin a circular orbit whose orbital

rate coincides with the mean angular motion of the actual ISS orbit under consideration.

The altitude of the orbit associated with the equilibrium state is taken as the mean of the

apoapsis and periapsis altitudes for the actual orbit. In this equilibrium condition, it is

assumed that quasi-steady forces (such as aerodynamic drag and gravity gradient) are

active on the system and are of constant magnitude and direction over the time interval of

interest. No other disturbance sources are active when the system is in this state.

External quasi-steady forces actually result in orbit decay and increasing orbit rates over

time, but these effects are negligible over the time intervals of interest so that this

idealized equilibrium condition can be used. In the equilibrium condition, the station,

rack, and all disturber masses are stationary with respect to the center of mass of the

composite system (point L) and therefore are stationary with respect to one another. The

1_ umbilical or (passive) actuator assembly is shown as a spring/damper element with an

effective stiffness, [K_], and an effective damping, [C_]. The spring element connecting

the dashed outlines of the station and rack is assumed to be stretched so that the

cumulative force in all of the elastic assemblies balances with the quasi-steady forces of

the circular orbit.

The scenario depicted by the solid outlines of the two bodies represents the

system when vibratory disturbances are active. The station and rack have been displaced

to a perturbed state but the center of mass of the system still coincides with point L. In

Chapter 5 of this paper, the perturbed motion is decoupled from the predetermined, bulk

orbital motion of the system.
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Figure 8: Diagram for Analytic Treatment of the Station/Rack Problem

(Note: To avoid complexity m the diagram, the spring/damper element is not shown connecting the station
and rack in the perturbed state; however, the two bodies are always assumed to be connected via this
mechanism.)

This analysis employs several different reference flames, which are shown in

Figure 8. Reference frame OXYZ has an origin at the center of the Earth and its axes are

fixed on distant stars. For the purpose of this study, reference frame OXYZ is considered

an inertial frame. A second frame is the local vertical local horizontal (LV'LH) frame,

which is defined with respect to the system orbit. The origin of the LV'LH frame (L) is

located at the composite center of mass, with one axis (z) pointing toward the center of

the Earth (nadir direction) and another axis (y) perpendicular to the orbital plane. A third

frame is the station equilibrium frame (SEF) whose origin (point SE) marks the position
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of the center of mass of the station when the system is in the equilibrium configuration

and whose orientation represents the nominal orientation of the station's body-fixed axes

relative to the LVLH flame. The station is oriented in a Torque Equilibrium Attitude

(TEA) in which the body-fixed axis system is not aligned with LVLH. A fourth reference

frame is the station body-fixed frame (SF) whose origin (point S) is fixed to the center of

mass of the Space Station. The axes of the SF represent the principal axes for the station.

When the system is in the equilibrium condition, the axes of the SF are aligned with the

axes of the SEF. The rack equilibrium flame (P_F) is the counterpart of the SEF and the

RF is the counterpart of the SF. However, the axes of the RF do not necessarily coincide

with the principal axes of the rack.

4.2 Application of Analytical Mechanics to the Station/Rack System

The purpose of this section is to introduce general expressions for the fundamental

quantifies necessary in the application of analytical mechanics to the station/rack system.

Whereas the vector formulation of the equations of motion relies on the use of vector

quantifies such as force and momentum, the analytical mechanics approach formulates

the problem in terms of quantities such as kinetic and potential energy and work. These

quantities are then used in a general form of Lagrange's equations to derive the equations

of motion for the system.

For the purpose of this formulation, a general form of the Lagrange equation is

introduced as the following [7],

:Q' (1)
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where L is known as the Lagrangian, defined as

L = T- V (2)

T represents the total kinetic energy of the system and V represents the total potential

energy. In Eq. (1) Rayleigh's dissipation function is represented as F and accounts for

the velocity-dependent dissipative forces of the system. The symbol ch represents a set of

k independent generalized coordinates, and Qkrepresents the generalized forces

associated with oh.

The total kinetic energy of the system shown in Figure 8 is expressed as the sum

of the translational and rotational kinetic energies [7],

T = _IM s(rCs"Vs)+IMR(rCR "VR)+2 - 122Q MO (reMQ"vr%)+ I_ TM "vm')-

(3)

2 {cog [IR]{cog}

where all velocity vectors are measured relative to the inertial reference frame (OXYZ)

and the dot symbol (-) denotes the inner vector product. Vectors r¢s and _R are the

velocity vectors of the center of mass of the station and the rack, respectively. The

quantities {cos } and {cog } are 3xl matrices containing components of the angular

velocity vectors of the bodies about their own centers of mass. The T superscript denotes

the transpose of the matrix. The scalars M s and M R represent the mass of the station

and rack and [I s ] and [I R] are 3x3 matrices representing the moment of inertia tensors

of each body. Vectors _MQ and rein, are the velocity vectors of the disturber masses,
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which areassumedto bepredeterminedfunctionsof time in the body-fixed frames of the

station and rack respectively. The quantifies MQ and mp are the masses of the Q_

station disturber mass and the P'_ rack disturber mass, respectively. Note that since the

disturber masses are considered point masses, they have no rotational kinetic energy

about their own centers of mass.

The total potential energy of the system is a combination of the energy stored in

the various elastic elements as well as the potential energy due to the position of the

system in the Earth's gravitational field. The general expression for the elastic energy

stored in the system is

1 r

where {_x_ 1 is the column vector representing the extension (translational and

rotational) of the B_ elastic element from its unstretched state and [K_ ] is the stiffness

rnau4x associated with this element.

The general expression for the grav/tational potential energy is

(M s M, MQ +_--_mp/ (5)_+_+_rMo p r=,)VG_v =-_E rs rR

in which rs, rR, rMQ, and rm, are the magnitudes of the relative position vectors between

the center of mass of the Earth and the centers of mass of the various bodies in the system

[9]. Since the mass of the station/rack system is negligible in comparison to the mass of

the Earth, the parameter _E is

gE _ GME (6)
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where G is the gravitational constant and M E is the mass of the Earth.

The dissipative function F of Eq. (1) accounts for the dissipative forces in the

system that are proportional to the velocities of the bodies. In the case of the station/rack

system, these dissipative forces result from the damping effect inherent in the umbilical

and passive actuator assemblies. Since the same physical elements are responsible for the

elastic and dissipative forces, the form ofF appears similar to that of the potential

function V_.As-nc, and is

1 (7)

where {a,_ } is the column vector representing the time rate of change of the extension

of the N _ element and [Cs] is the damping matrix(translational and rotational)

associated with this element [7].

The calculation of the generalized forces Qk is based on the principle of virtual

work. An expression for the virtual work is

= • (8)
k*=l

where p is total number of forces acting on the system, n is the total number of

generalized coordinates, _:j is the j'_ force vector, ?j is the point where _:j is applied, qk

is the k th generalized coordinate (as in Eq. (1)), and _Sqk is the virtual displacement of qk

[7].
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The virtual work can also be expressed as the result of the generalized forces Qk

acting over the virtual displacements &t k

n

k=l (9)

so that, by comparison of the previous two equations, the set of generalized forces can be

calculated as

P

=EPj a:j
"0q-7 (Io)

In the case of the station/rack system, the generalized forces include external forces, such

as aerodynamic drag, that are not derivable fi'om a potential function [7].

4.3 Breakdown of System Motion

One of the most important steps in the analytical mechanics approach is choosing

a suitable set of generalized coordinates to describe the system motion. The purpose of

this section is to introduce a vector breakdown of the translational motion of the system

fi'om which a partial set of generalized coordinates may be chosen. The angular

coordinates used in the formulation are discussed in Sections 4.4 and 4.5, where a

breakdown of the total angular motion of the system is presented. The velocity vectors

vR, _=,, _s, and _Mo, of Eq. (3), account for the total translational motion of the

system as seen by an observer in the inertial frame. This motion can be expressed

mathematically as the sum of the motion of the system's center of mass and a perturbed

motion of the individual bodies about their respective equilibrium positions.
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Figure 9 shows the set of position vectors that arc used in this analysis. In this

figure the dashed outlines of the bodies in the equilibrium configuration have been

omitted to increase the clarity of the diagram. Vector _:M pointS from the center of mass

of the Earth to the center of mass of the composite system. The equations of motion for

the composite center of mass are derived in Section 5.2 and _=_ is shown to be a suitable

vector for tracking the orbital motion of the system. Vectors fsE and i_ are fixed in the

LVLH frame and represent the position vectors of the origins of the SEF and R.EF

measured from the center of mass of the composite system. Vectors _'s and _'R measure

the perturbed displacementS of the station and rack from the pointS SE and RE

respectively. Vectors RQ and fp point from the center of mass of the station and rack to

the Q'_ and P'_ disturber masses. Vectors Ds and d_ point from the centers of mass of

the station and rack to the connection pointS of the N _ umbilical (or actuator) assembly

on the respective bodies.
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4.4 System Kinetic Energy

The purpose of this section is to present a formulation of the kinetic energy

expression in terms of motion measured by a local observer (fixed in the LVLH flame).

For the system considered in this paper, the composite center of mass is accelerating due

to its orbital motion about the Earth. Furthermore, the inertial observer is considered to

be fixed in a frame in which a once-per-orbit bulk rotation of the system about its own

center of mass is observed. A description of the system motion from the standpoint of a

local (noninertial) observer can still be obtained, however, as long as the proper

transformations of the inertially measured velocities are performed. This section, along

with Sections 4.4, 4.5, and 4.6, set the stage for the subsequent derivation of the equations

of motion for the composite center of mass of the system (Section 5.2) as well as the

equations of motion for perturbed rack motion (Sections 7.1 and 7.2).

Translational Kinetic Energy

The translational velocity vectors of Eq. (3) may be expressed as the time rate of

change of the position vectors shown in Figure 9. The velocity vector for the center of

mass of the rack, for example, may be expressed as

- = = (11)

where all time derivatives in Eq. (11) are calculated in the inertial frame. Similar

expressions can be written for the vectors _m,, _s, and reMQ.

A truly local description of the system motion is that motion seen by an observer

fixed in the local orbital frame. (The local orbital frame will be denoted by the symbol L
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from thispoint forward.) Althoughthevelocityvectorsin Eq.(3) aremeasuredrelative

to the inertial flame (denotedwith thesymbolO from this point forward),theymaybe

rewrittenasvectorsmeasuredrelativeto arotatingflameby applying the following

general transformation,

_=x'+_x_' (12)

where _ is the time rate of change of any vector measured in the inertial flame and _' is

the rate of change of the vector as measured by an observer in the rotating flame, and

is the angular velocity of the rotating flame measured relative to inertial space.

To avoid confusion, a new notation will be introduced in the form of a superscript

that denotes the flame in which vector and tensor quantities are measured. The

superscript will be appended to the vector notation in the following fashion,

_=_ (13)

Using this notation, the vectors given in Eq. (3) would all take an O superscript. (Further

information regarding vector and tensor notation is given in the List of Symbols.)

Applying Eq. (12) to Eq. (11), the rack velocity is written as

-o -L +_ --L --L +_ --L " --L
Va =rc_ x r& +r_ x rv_ + _ +_ x axe, (14)

where vector notation such as _Rt implies the time derivative of the components only, as

if the base vectors of L were constant, and notation such as _-_ simply implies that the

components of this position vector have been resolved along the local orbital flame. The

symbol ff_ is the orbital rate vector. Note that the quantity _ represents a special case

because it is measured by an inertial observer, but the components of this vector are
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assumed to be resolved along the local orbital flame so that the cross products of Eq. (14)

may be carried out.

Noting that -rr_ = 0, the total translational kinetic energy of the rack and its

disturber masses is rewritten in the L frame as

l,.--, /. L "L "L -- / L

+axt

A similar expression can be written for the kinetic energy of the station and its set of

disturber masses.

Rotational Kinetic Energy

The rotation of the station and rack about their respective centers of mass consists

of one complete revolution every orbit plus small angle rotations from the equilibrium

orientations. The orientation of the station's body-fixed frame (SF) deviates from that of

the SEF but attitude requirements limit these deviations to 3.5 degrees, peak-to-peak

(private communication, Alan Henry, Microgravity AIT, January, 1997). The rack also

rotates through perturbed angular displacements as it oscillates about its equilibrium

orientation. However, the stiffness of the umbilical and actuator assemblies limits these

deflections to small angle rotations.

The total angular velocity of the rack can be written as the sum of the bulk orbital

motion and the perturbed motion,
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_R -- fi + (_PERT (16)

where _ P_T isthe angular velocitydue toperturbedmotion. The angularratesgiven in

Eq. (16)must be measured inertiallyifthey are tobe substitutedintoF,q.(3).An

expressionsimilarto thatof Eq. (16) can alsobe wrfftenforthe totalangularvelocityof

the station.

The components of the inertia tensors given in the last two terms of Eq. (3) are

time varying-quantifies except in the case in which they are resolved in their respective

body-fixed flames. If the rotational kinetic energy is to be expressed in terms of the

moments of inertia measured in the body-fixed frames, the angular velocities must also be

resolved along these frames. It is assumed that the components of the orbital rate vector

are known in the local orbital frame so that the total angular velocity of the rack can be

expressed in the body-fixed frame through the following transformation,

{f.0 R } = [IR/L]{_"_ L } + {_pRERT} (17)

The L and R superscripts denote that the orbit rate and the perturbed angular velocity are

resolved in the LVLH and rack body-fixed frame respectively, although these quantifies

are measured relative to an observer in the inertial frame. The quantity [/R/L] is an

orthogonal transformation matrix that transforms vector components from the L frame to

the rack body-fixed flame. Using Eq. (17) the total rotational kinetic energy of the rack

can be expressed in matrix notation as the following:

TROT, RACK =([IR/LJ{ f2L} +{o)pRERT})T[IRR]([/R/L]{k"2L}+{OpRERT}) (18)

A similar expression can be written for the rotational kinetic energy of the station.
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4.5 System Potential Energy

The total potential energy stored in the station/rack system is the sum of the

elastic and gravitational energies given in Eqs. (4) and (5) respectively. The purpose of

this section is to rewrite the general expressions given in these equations in terms of the

vector quantities shown in Figure 9 and a set of perturbed angular displacement

coordinates. The angular displacement coordinates are used to account for the torsional

elastic energy stored in the umbilical and actuator assemblies.

Elastic Potential Energy

The elastic elements that tether the rack and the station are assumed to possess a

translational stiffness property as well as a torsional stiffiaess property. Therefore, the

total elastic potential energy given in Eq. (4) must include the energy stored due to both

of these mechanisms. This energy is accounted for by splitting the quantity represented

in Eq. (4) into two parts.

Using the position vectors shown in Figure 9, the energy stored due to the

translational stiffness can be written in matrix form as

Vr_ =_

[KTRN_ ]- (19)

({,&}+{ar_}+{dh}-{rs_}-{arsL}-{Dh}-{L_})

where the small dot symbol denotes matrix multiplication. The L superscript implies that

the elements of the matrix quantities are vector and tensor components resolved along the

local orbital frame. The quantity {L_ } represents the unstretched length of the N _ elastic
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element. The matrix quantity [KTI1N_ ] is the 3x3 translational stiffness matrix of the N _

elastic element.

When the perturbed angular motion of the rack and station are sufficiently small,

the angular rates associated with this motion are integrable into components of small

angle rotation vectors that measure the deflection of the station and rack body-fixed

coordinate systems (SF and RF) from the station and rack equilibrium coordinate systems

(SEF and REF). Further details concerning this assumption are given in Chapter 6.

Under the assumption of small angle rotations, the stored energy due to pure angular

extension of the N _ elastic element is

1 L
vro, =__({aO,}-{aO_-}+{aO,_}) r [KTOR_] ({aO_}-{aOsL}+{aO_N}) (20)

where the quantifies {A0 L} and {AOLR} represent the components of the small angle

displacement vectors for the station and the rack and {A0oL_} represents the angular

extension of the N _ umbilical or actuator assembly when the system is in the equilibrium

configuration. In the equilibrium configuration, quasi-steady orbital forces are active on

the rack and steady-state torques are induced about the raek CM. These torques are

partially counteracted by the torsional stiffness property of the elastic elements via the

angular displacements {A0oL_}. The quantity [KTOR_] is the 3x3 torsional stiffiaess

matrix.
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Gravitational Potential Energy

The gravitational potential energy of the rack and the set of rack disturber masses

is taken from Eq. (5). Using the position vectors from Figure 9, the gravitational

potential energy for the rack and its disturber masses is rewritten as

A similar set of expressions is derivable for the gravitational potential energy of the

station and its disturber masses.

(21)

4.6 Rayleigh's Dissipation Function

The method used to construct the dissipation function is very similar to that used

for the elastic potential energy function. The umbilicals and actuators are assumed to

possess a translational damping property as well as a torsional damping property. The

dissipation function, represented in Eq. (7), is split into two parts that include

contributions from the translational and torsional resistance to motion.

Using the vectors shown in Figure 9, the dissipated energy due to the relative

translational velocity of the bodies is written as

F_ --_

where the L superscriptimpliesthatthe elements of the matrix quantitiesarevector

measured inthe localorbitalframe. The matrix quantity [CTRN L] isthecomponents

translationaldamping matrix of the N _ damper element,resolved inthe L frame.

(22)
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The energydissipateddueto pure angular motion of the N _ damper element is

assumed to be

_ ({_o,_1-/_0:/)_[_o,_](/_0_/-/_e:/)r_o, --i (23)

wh_roth_q_titi_ {_0_}an_{,,0_}aret_omoratesofCh_g_of_¢=g_

di_,laccment_giveninEq.(20).Thema_,,quantity[CroR_]istheto_ion_damping

matrix.
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5. Orbital Motion of the Composite Center of Mass

5.1 Lagrange's Equations and Indicial Quantities

As a first application of Eq. (1), the equations of motion for the curvilinear

translation of the center of mass of the composite system are derived. The set of

generalized coordinates chosen for this derivation are the components of the vector _,4

resolved along the local orbital flame. For this derivation, Eq. (1) is written as

1_ _g_L+ (24)

where _. is an indicial counter that takes the integer values of 1, 2, and 3 assigned to

correspond to the directions x, y, and z (respectively) of the axes of the local orbital

frame. In this special case, the generalized coordinates corresponding to _ =1 and _. =2

are zero because the vector rc_ has a nonzero component only along the z (nadir)

direction.

The translational kinetic energy and the gravitational potential energy of the

system are the only quantities in the Lagrangian that are functions of the components of

_C_Mand/or _:_. These quantifies have been given for the microgravity rack and its

disturber masses in Eqs. (15) and (21). The kinetic and gravitational energies of the

station and its disturbers have a very similar form. By inspection of Eqs. (19) and (20) it

can be seen that the elastic energy stored in the system is a function of the relative

displacements between the connection points of the elastic elements on the station and the
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rack, and does not depend on the set of generalized coordinates {r_}. A similar

statement can be made for energy dissipated in the umbilical and actuator assemblies in

that the dissipation function F includes no elements of the set {r_ } or {/'_ }. Likewise,

the rotational kinetic energies contain no components of the set {r_} or {f_ }. Thus,

Eq. (24) can be rewritten as

dt L = Qz (25)

where T_._s is the total translational kinetic energy of the system and VGRAv is the total

gravitational potential energy of the system. These quantities are

1 M [-L
T_= I Rtr_ +d_ +fix(r_ +?_ +d_))-

1 "I.

2

1 " L -- --L --L+__(_ +_+_+_(_+_+_+_)).

(26)

and
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- __ _1 + -_÷_+_v_,v I_ ÷r_÷ ÷r_

-bt'Ms _t - _t,MQ

The generalized forces are calculated fi'om Eq. (1 O) as

Q_ = Q, = Fz_r. x

Q2 = Qy = FEx'r,y (28)

Q3 = Qz = F_cr.z

where Fmcr,x,y, and z represent the components of the total external forces (not derivable

from a potential function) that are acting on the system.

Given the developments up to this point, all of the information needed to derive

the equations of motion (from Eq. (25)) has been collected. As a bookkeeping tool,

indicial notation is employed to reduce the number of calculations that must be

performed. The expressions for the kinetic and potential energies given in Eqs. (26) and

(27) can be rewritten in indicial notation as follows:

TTRAN S ----

[ , (,+, ,)]M R i'_i + arR, i + ei_kflj rra.k rr_,k + arR. k •
/

rosa. i +/LrR. i ÷ _ia_m_'_ m rGM,n ÷ rRE,n -1- _d" n

+ rrb _+ar_. i +ri_ +s_j r&k +rink +arG +r_k •

[,a., (ra+ ' )]+ar{,i +f_i +cmf2_ . r_. +arK. +r_.

1 [._ _t_ (_ _ _r')]+_Ms rcM,i + s.i +_ij_f/j rcM,k +rSE,k + S,k "

[._ _.L (L L arL)]rCM,i + S.i + e_m rcM,o + rsE,. + s.,

(27)
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• L + L

[,a, +ra. +.all

(29)

To avoid confusion, subscripts used to identify the vector are in capital letters and have

been separated from the indieial notation with a comma. Therefore, all subscripts to the

right of the comma are indices that count from 1 to 3. In terms where one index appears

twice, a summation across this index is implied. The quantity s ijx is the permutation

symbol defined in Appendix A.

The indicial expression for the gravitational potential energy is

V(3t_v =

L L + L L L L L L L L +,__L L I 1-_tEMa r_ir_Li rl_ir_r_i +ar_,i_rl(i +2r_-r_i +2r_-ar_. i al_iar_.i -2

L L r_ar _ _r_i_r _ r_rp_-_t_:_,[r_vLir&ti+ e L + L e + e L
P

1

L L L L L L L L +,_ L L L L -2+ 2ar_i rl;.i]+ 2r&i rff.rz + 2r&j_ +21"_irl; a +2rl_iz_d']_ i /-r_ri a

1 1
L L

_p.EMR[rfc,.ir&t, +L L +ar_,iar_. L L+ 2r_. rs_ L L L L+2r_-g<i

r_.,i r_r._i "at 1_- R_-

Q

1

L L +._ L L +,- L _-_L +_L L L L +2_LRL ]-_

(31)
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5.2 Equations of Motion

The equations of motion for the composite center of mass are obtained by

applying Eq. (25) to the quantities in Eqs. (29) and (31). In presenting the equations of

motion, indicial notation is retained but conversion of the equations of motion to vector

form is straightforward. The equations of motion are as follows:

-L 4. " L + L L .LM_[[c_ x +arLx e_D._ (rc3_._ r_r._ +a/a)+2e_f2j (rfivj, +aft)

+ex_fljemf_(r_t , +r_, +#_)]

• L + L L -L+_[_ +_ +_(_ _ +_)+_(_ ÷_)
+_,+_,)]
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3

t_<,,,IL I_<,,, "L I_ ]] tr_+=,_+=,,L)

' I_<,,,IL I_1

3

.._!le,,,+,e,,+_,'-IVl -s. +,.T.,.)

3

I-+Ir,,+,_l r," +_.t,,)+,_-c_---+" --. (_,.+rL,
I_<_1L i_l T_

3

,,. .

= Fl_,fi- ;_

(32)

Here the symbol a denotes the angle between the vectors _n_ and the vector resulting

from _ + a_R . Note that the coso_ derives from the inner vector (dot) product of _-u

and the resultant of i_ + _'R- The angle Or is between _:_ and the resultant of

r_ + "rR + rr, (a vector pointing to the pen disturber mass). The angles 13and @Q have

similar definitions but apply to the station and its disturber masses.

Each of the last four (gravitational) terms in Eq. (32) can be expanded in a Taylor

series of the following form,
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3

f(x)=0 +a_+x_)-__l- 3_x

where, in the first of these terms,

a = 2 cosa

and

(33)

so that all higher order terms in are neglected. This approximation is

reasonable, given that the rack and station are tethered via umbilical and actuator

assemblies that hold the bodies' centers of mass in proximity to the center of mass of the

composite system.

The application of Eq. (33) to the first of the gravitational terms in Eq. (32) gives

r
gEMR [ r_ + _R COSa

3

+ rAa,x + r_.x +

- s 1-3 L
ircM[ l}-_ i .)r_,_ +r_._

L (L L)P-EMRrc_M.X _EMR rlg.E,x + AI'_. x
for _. = 1,2

z. 2_tEMR(r_, x + ar_._,)
_EMRrcM'Z for _. = 3

(34)
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wherehigherordertermshaveagainbeeneliminated. Expansionssimilar to that shown

in Eq. (34) can be carded out for the other gravitational terms in Eq. (32).

Since the point L (to which the vector/cM points) is located at the composite

center of mass of the system, a special relationship exists for the positions of the centers

of mass of the various bodies relative to this point. Referring to Figure 9, this

relationship can be expressed as the following:

From Eq. (35) the following relation is derived.

Eqs. (35) and (36) can be used to eliminate a number of terms in Eq. (32).

The acceleration vectors of Eq. (36) can be transformed using the relation

x o = _L + 2fi X _L + fi X _L + _ × (fi X _L) (37)

where Eq. (37) is derivable from the transformation given in Eq. (12). IfEq. (36) is

transformed according to Eq. (37) and substituted (along with Eq. (35)) into Eq. (32), the

vector equation of motion for the composite center of mass becomes

rcM+ _ 3- (38)]r l MToT, 

where all vector quantities are measured and resolved in the inertial frame.

The homogeneous form of the differential equation given in Eq. (38) is the well-

known equation of motion of the two-body problem. One of the bodies is the Earth and

the other is the entire station/rack system. In this case, the mass of the Earth is so large
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compared to that of the station/rack system that the homogeneous form of Eq. (38)

reflects the central-force motion of the station/rack system in orbit. The term on the

right-hand side of Eq. (38) is the total disturbing acceleration due to any force not

included in the central force term (e.g. drag and solar pressure).

Although Eq. (38) is nonlinear, general analytical solutions of the homogeneous

form of the equation are attainable [9]. Furthermore, well-known methods are available

for dealing with the case in which disturbing forces are present. For the purpose of this

study, the orbital motion of the composite center of mass of the station/rack system is

considered a predetermined function of time. One advantage of making this assumption

is that the equations for the orbital motion need not be integrated in order to solve for the

station and rack motion, leaving only the local perturbed motion of the system as

unknown. Although orbital coupling terms still appear in the equations for the perturbed

motion, these terms are either quasi-steady in nature or they are small enough to

disregard. Accurate estimations of the quasi-steady terms can be made through

knowledge of the ISS orbital parameters. These predetermined, quasi-steady orbital

terms can be treated as DC signals over the time interval of interest, which, when

considering vibratory behavior, is usually of 100 second duration or less.
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6. Lagrangian and Dissipative Function for Perturbed Rack Motion

The purpose of this chapter is to present a suitable choice of generalized

coordinates to be used in deriving rigid body equations of motion for the microgravity

rack and to rewrite the Lagrangian in terms of these generalized coordinates and

quantifies that are assumed to be predetermined functions of time. In the previous

chapter, the equations of motion for translation of the composite center of mass were

derivable from a general form of the Lagrangian. Unknown quantities appearing in the

Lagrangian did not preclude the derivation of Eq. (38). Examples of these quantifies

include the elements of the P'_ disturber mass velocity {i-rL}, which appear indicially in

Eq. (29). As before, the notation {t_ } represents the components of the disturber mass

velocity measured by an observer in the LVLH (L) frame. The disturbing equipment is

assumed to be hard mounted to the rigid chassis of the rack and the motion of the P"

disturber mass is assumed to be a known function of time in the rack body-fixed frame

only. As the rack tilts from its equilibrium orientation, it carries with it the disturber

masses. Since this perturbed motion of the rack is unknown, the quantity {/.L } is also

unknown. In retrospect Eq. (38) shows that the coordinates {rcu } are independent of the

system's internal mass motion, so that detailed information about internal motion is

unnecessary in deriving equations of motion for the composite center of mass.

The primary issue addressed in this paper is the vibratory disturbance attenuation

capability of the ARIS. The vibratory behavior of the rack is primarily a function of the

characteristics of the umbilical and actuator assemblies, the vibratory acceleration
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environmentonboardthe station,and the forces induced by disturber mass motion.

Therefore, detailed descriptions of umbilical and actuator parameters and internal mass

motion are required.

6.1 Choice of Generalized Coordinates

The methodology employed in Chapter 4, in which the system motion is broken

into the bulk motion of the composite system and a perturbed motion of the individual

bodies, reveals an adequate description from which a set of generalized coordinates can

be chosen. The minimum number of independent generalized coordinates needed to

describe the motion of a given system is

n = N - c (39)

where N is the number of degrees of freedom of the unconstrained system and c is the

number of kinematic constraints [7].

For the remainder of this paper, the motion of the station is considered a

predetermined function of time that remains unaffected by the motion of the rack. This

assumption is justified by the large mass ratio between the two bodies. In the assembly-

complete configuration, the station mass is 500 times greater than that of the most

massive microgravity facility. Therefore, the only motion that is assumed unknown is the

perturbed motion of the microgravity rack. (The bulk orbital motion of the rack is

assumed to be given in Eq. (38)). Since the rack has six degrees of freedom as a rigid

body, N = 6. Since no kinematic constraints have been placed on its perturbed motion,

c--O; thus n=6.
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From the standpoint of an observer in the local orbital frame, the perturbed

motion of the rack may be considered oscillatory motion about a position of equilibrium.

The perturbed motion results in small translational excursions as well as small attitude

deviations of the rack body-fixed flame fi'om the rack equilibrium flame. The perturbed

translational displacement is measured with the set of components {m R}, while the

attitude deviation is contained in the transformation matrix [/R/L] given in Eq. (18).

The components of the displacement vector _R, resolved along a chosen set of axes,

represent a suitable choice of generalized coordinates for translational motion. In the

special case in which the angular motion of the body is small, the perturbed angular

velocity vector _ P_mTis integrable into an angular displacement vector, and Lagrange's

equation may be applied directly [7]. This small-angle assumption was applied to the

potential energy expression in F_,q. (20) and can be used to choose a suitable set of

generalized coordinates to represent the rotational degrees of freedom of the rack.

For the purpose of this study, the generalized coordinates are chosen to be the

perturbed translational displacements of the rack resolved along the local orbital flame

and the perturbed angular displacements resolved along the rack body-fixed flame. The

reason for choosing the angular displacements resolved along the RF is that the moments

of inertia for the rack are time invariant in that flame. The translational displacements are

represented by the set {_'_}, which tracks the motion of the rack center of mass. The

rotational displacements are represented by the set {A0_}, wkich measures the angular

deflection of the rack body-fixed flame from the rack equilibrium frame.
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6.2 Approximating Expression for the Lagrangian

With regard to the application of Eq. (1) to derive the equations for perturbed rack

motion, suitable approximations of the kinetic and potential energy funetions are realized

through a Taylor expansion of the exact expressions for these functions. Since

application of Lagrange's equation reduces the order of the energy functions by one in the

generalized coordinates, linear equations of motion are realized by retaining quadratic

terms in the generalized coordinates.

The general expression for the Taylor expansion in n variables (q_ ,q2,--.,qo) is

f(q,,q2,...,q=) = f(c,,c2,...,co)+ (q,-c,)

1 _--,,_-,( 02f "It

+ 7., I,OqWOqJtq, - c.Xqs - c.) (40)

' °££( c_3f _/
+_, i _,&:l._--_'_&:li) _'q'-c'Xq'-c'Xqi-c')+''"

where c 1,c 2,...,c, represent the point about which the expansion is carried out. For the

purpose of this study, the point c_,c 2,...,c. is taken to correspond to the equilibrium

position. Note that the partial derivatives are evaluated at the point q, = c_, q2 = c2, etc.

[10].

Rotational Kinetic Energy

The rotational kinetic energy of the rack was given in Eq. (18) as

TROT,.CK = ([/R,'L]{_L} + {C0p_r})r[i_] ([/R/k]{_2k } + {03p_RT})
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Thetransformationmatrix [/R/L] Call be interpreted as being composed of two parts. The

first part represents a (large angle) time-invariant transformation from the L frame to the

rack equilibrium frame, and the second part represents a time varying transformation

from the REF to the RF so that

[1R'L]=[IR/U][lr'r'/L ]

where the transformation matrix [/R/RE] is

(41)

I c02_ 3 COlS03 +sO,s02C03 so,s03 - c0IsO2e031

[/R/RE]= [-- C02_3 cO,cO3-- sO,sO=sO, so,co, + cO,sO=se,/
L sO2 - sOlcO= cOlcO= j

Here 0,, 02, and O 3 represent three consecutive (small-angle) rotations that bring the

REF axis system into alignment with the RF axes. Under the assumption of small angle

rotations the angles e,, 02, and O3 are the same as those represented by the set of

generalized coordinates {Ae_}. The notation sO, c0 is used to represent sin0 and

cos0, respectively. The transformation matrix [/RE'] transforms the components of a

vector resolved in the L frame into components resolved along the REF. The elements of

[1_/)'] have the same functional form as those Of [l"_] but the perturbed rotations O,,

02, and 03 from Eq. (42) are replaced with a set of time-invariant large-angle rotations.

The components of the perturbed angular velocity, resolved along the rack body-

fixed frame, can be expressed in terms of the angles 01,02, and 03 and their time rates of

change. The angular velocity components are given as

(42)
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Io, T,]Fo02c0,so,01r0 1
co,_T.,.j L se= 0 IJL03J

where x", y", and z" denote directions along the RF axes. Substitution of Eqs. (42)

and (43) into the kinetic energy expression given in Eq. (l 8) still results in an exact

expression for the rotational kinetic energy. Starting with this expression, a Taylor

expansion about the equilibrium orientation (e I = e_ = e 3 = o) can be carried out using

the expression given in Eq. (40).

Retaining second-order terms in the Taylor expansion from the sets {e_ ,e 2,e 3}

and {E)I,(_2 ,E)3} results in first order (linear) equations of motion in the generalized

coordinates. Since the angles e,, 02 , and 03 are considered sufficiently small to retain

only second order terms in the expansion, these angles arc considered components of the

angular displacement vector designated as A0_. As mentioned before, consistent with

_ _hoi_ofgon_d _oo_di._{_e."},_o,_an_ _ompon_n__ _ _gul_

displacements of the rack about the orthogonal set of rack body-fixed axes. The symbols

for the components e_, 02 , and 83 become Aex., bey., and Aez..

with respect to only those terms involving coupling between the orbital and

perturbed motion (terms involving components from both _ or _ and A0R or A_ R ), the

expansion of the rotational kinetic energy function is presented as if the rack body-fixed

axes are principal axes. The justification for this assumption is explained in Section 7.2

where the rotational equations of motion for the rack are discussed. Coupling terms

between the orbital and perturbed motions appear in these equations of motion, but it is
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concluded that these terms have minimal impact on the microgravity environment inside

the rack. This conclusion applies to coupling terms involving elements taken from the

diagonal of the inertia matrix, and it applies even more so to coupling terms involving

elements from the off-diagonal because the off-diagonal elements of the inertia matrix are

small compared to the diagonal elements (see Appendix B).

Under the condition just stated, the expansion of the rotational kinetic energy is

TROTATION _ _"_y,_"_z, (Iy- -- Iz.)A0 X. + f2x._z. (I =. - I x. )A0y.

+ f2_,f_y,(I_.- Iy.)AOy.

1 2 )AO_x. 1 2+ _-("r, - f2:.XIz- - Ix- I 2

1 2+ --',

+ _x,Ix.A{_. + _y,Iy.AOy. + f'2z,I_.AO Z.

+ _,Iy.AOy.AO x. - f'2y,Iz.AOz.AOx.

+ _z' 0," - Ix')Al_x-A0y- + F2,,,L,.Ae,.AO,.

]" "R R "R

+ _" _t0R._IR._AOR,j
(44)

where the subscripts x', y', and z' denote directions along the REF axes. Note that in

the expansion given in Eq. (44) all terms of order three (and above) in the generalized

coordinates have been omitted. Furthermore, although the orbital coupling terms

involving the cross moments of inertia have been omitted in the above expression, the

final term is written indicially and can include the cross moments of inertia.
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Translational Kinetic Energy

The translational kinetic energy expression given in Eq. (15) contains the vectors

F_ and _, which represent the position and velocity of the P_ disturber mass relative to

the rack center of mass with components resolved along and measured in the local orbital

flame. The disturber mass motion is assumed to be known only in the rack body-fixed

frame because the disturbing hardware is assumed to be hard mounted (bolted) to the rack

structure. Therefore, transformation of the components of FL and _L is necessary.

Transformation of the components of the relative position vector is accomplished

through the following:

{rpL} = [/L/RE ] [/m/R ]{rR } (45)

The matrix [lmJR] represents a transformation between the RF and REF and is simply

the transpose of the matrix given in Eq. (42). The matrix [/tim] is the transpose of

[I_:L], also given in Zq. (42).

Transformation of the components of the velocity vector rL is partially

accomplished with the relation given in Eq. (12). The transformation takes the following

form,

_L -_- _R .}. _PERT X re (46)

where _P_T is the perturbed angular velocity of rack, resolved along the RF. The vector

expression on the right-hand side of Eq. (46) has unit vectors in the RF that require

components to be transformed to the L frame for substitution into the kinetic energy
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expression given in Eq. (15). The matrix expression for the transformation of the vector

components is then given as

{i"rL} : [/_ ][/RE/R] ({_ } + [e,ER.r ]{rpR }) (47)

where [¢,.Or,ER..r]is the antisymmetric second order tensor of &PER'r•

The matrix quantifies [/RE/R] and [(3.)pERT]can be written in terms of the angles

0_, 02, and 03 (and their rates of change) through the relations given in Eqs. (42) and

(43). Exact expressions for the components of the position and velocity vectors of the P'_

disturber mass, in terms of the generalized coordinates, can then be obtained. By

substituting these expressions into the disturber mass velocity (given in F_,q. (15)), a

Taylor expansion of the velocity about the equilibrium orientation (0_ = 02 = 03 = 0) can

be carried out. The expansion is obtained using Eq. (40).

For the purpose of this study, quadratic terms (and terms of higher order) in the

coordinates O_, 02, and 03 , as well as in 6_, 02, and 03, are omitted. The reason for

omitting these terms is that they are multiplied by the smaU disturber mass quantity, mp.

These quadratic terms then become third-order terms in magnitude in the ldnetic energy

expression. Applying the expansion in Eq. (40), the velocity components of the P*

disturber mass are given as

-L -L L/RE -R "R R R -R
Vr_ " r_i +6riLl-b/_ (rl_j +E jmk/_Kmrl_,k + E;jmk Z_OKmrl_,k )

+ k
(48)

where, consistent with earlier developments, the perturbed angular displacements are

considered sufficiently small so that the components 0_, 02, and ()3 can be integrated
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into componentsof a smallangledisplacementvectorresolvedalongthe orthogonalaxes

of the RF.

Elastic Potential Energy

The elastic potential energy function given in Eq. (19) contains the quantities

{d L } and {Dr}. These quantities represent components of the position vectors of the

connection point of the N _ elastic element on the rack and station respectively (see Figure

9) resolved along the L (LVLH) frame. Because the station and rack are rigid bodies, the

components of these vectors are time invariant in their respective body-fixed flames.

However, owing to the perturbed angular motion of the bodies, the components of these

vectors vary in time relative to the axes of the L frame.

The elements of the column vector {d L} may be expressed in terms of the time-

invariant body-fixed components through a transformation like that given in Eq. (45):

{d_ } = [/L'Zr ] [1 _'R ] {d_} (49)

A similar transformation can be used for the quantity {D_ }. Substituting the

transformations for {d_ } and {D_ } into the displacement vector given in Eq. (19), the

translational stretching displacement of the N _ elastic element becomes

{ar_}={rZ}+{ar_}+[it/_][l_'rt]{d_}_{rs_}_{arsL}_[l_St][lSE'S]{DS}_{L_} (50)

Note that Eq. (50) represents an exact expression for the displacement of the N _ elastic

element.
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The relation given in Eq. (50) can be expanded about the equilibrium orientations

for both the station and the rack. This expansion is obtained with Eq. (40) as

(51)

where the quantities {dLr_ } and {DL_ } are the time-invariant components of the position

vectors dN and 13N, resolved in the L frame, when the rack and station are in their

equilibriumorientations.The quantities{do_} and {DoS_} have the same definitionbut

arc components resolvedin the REF and SEF respectively.Note thatthe components of

{d,_} and {D,S_} are equal to the components of d_ and I:)_resolvedin their

respective body-fixed frames. The matrix quantities [AORR] and [A®s s] represent the

antisymmetric tensors of the vectors A0_ and A§ s respectively. With regard to the

equilibrium condition, the resultant of the vector sum of the first five terms of Eq. (51) is

{rr_}+ {doLN}--{r_ }- {DoLN}--{L_ } = {ALLo_} (52)

where {ALLo_}is the small extensionof theN _ umbilicalassembly when the system isin

equilibrium. The approximation for {arr_ } is then rewritten as

{_rL } _ {AL_ } + {ar_ } +[/tJ_ ][A®: ] {d,_ } - {arL } --[/L/S_ ][AOS ] {D_ } (53)

In this case the expansion of {at L} has only been carried out through the first

order terms. Eq. (52) shows that the large displacement vectors cancel out due to the

equilibrium condition, leaving only small terms in the expression for {arL}. According

to Eq. (4), the displacement vector is multiplied by itself (via the stiffness matrix) in the
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potential energy function. If second-order terms were included in Eq. (53), the only

additional terms that would appear in the potential energy fimction would be third and

fourth order terms. Therefore, for the purpose of this study, the expansion given in Eq.

(53) is considered sufficient.

The indicial expression for the relation given in Eq. (53) is

L L L +l_ZEAC_X ,_ __rL I L'sEAc_s n sE (54)ArN.i _ _dI"oi_l,i + ArlLi oij _vR,j'k_oN,k S.i -- "ij _vS.jk_oN,k

which can be rewritten as

g L +ArRLi-alL /t21_AAg -ar L + I')L l L's_AAs (55)AI'N,i '_" A_oN,i _oN,ij'.l_ _Vg,k $.i _oN,ij jk _V$.k

L L -'L "L

where do_,i j and DoN,i j are the elements of the second-order tensors don and DoN. The

dements of these tensors are defined as

do%,ij L= _ jik d oN ,k

and

L ' L

D oN,ij= s j_ D oN,k

L L kthThe quantifies do_.k and DoN,k are the components of {doLN} and {DoL }, described

above. An approximation for the elastic potential energy due to translation is obtained by

substituting the approximation for displacement given in Eq. (55) for the total

displacement vector in Eq. (19). The resulting expression is shown in the Lagrangian

given in Appendix A.

The translational and torsional stiffness parameters, contained in the quantities

[KTRN_] and [KTORN], appearin Eqs. (19) and(20). The parameters were measuredin

the rack body-fixed flame and require transformation if they are to be resolved in any
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other flame of reference. The transformation of the stiffness quantities between the RF

and the REF involves small angle correction terms fi'om the transformation matrix

[Im/R]. Therefore, these correction terms include the small angle displacernents {AO_}.

These con'cction terms are omitted in the transformation of the stiffness tensors because

if the correction terms are substituted into the potential energy expression, along with the

expansion given in Eq. (55), the terms that result are third order (and higher). For this

reason, the transformation of the stiffness tensors takes the form

[KL] _ [IRE/L ]T [K_ ] [lRE/L ] (56)

where [K_] rcprcscms either [KTRN_ ] or [KTOR_]. For the purpose of substitution into

the potential energy function, Eq. (56) states that the stiffness quantities are considered

invariant under transformation between the RF and the REF.

If third-order terms are ignored in the torsional potential energy given in Eq. (20),

the potential energy due to the torsional stiffness property of the umbilical and actuator

assemblies can be rewriUcn as

I R R R T

All of the quantities in this equation have been resolved in the RF because this will

become the preferred flame of reference for the final form of the equations of motion.

Just as in the other expansions presented to this point, all third-order terms in Eq. (57)

have been excluded. Consistent with the exclusion of these terms, small-angle correction

terms for the transformation of the quantity [KTORs] between the RF and the REF have

been omitted, as stated in Eq. (56).
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Gravitational Potential Energy

The second term of the potential energy function given in Eq. (27) contains the

vector _L. AS described above, the position of the P_" disturber mass at some given time

is known only in the rack body-fixed flame. The position vector of the P_ disturber mass

can be expanded about the equilibrium orientation using Eq. (40). Just as in the case of

the kinetic energy expression for the disturber masses, terms of second order and higher

in the coordinates 01 , 02 , and e 3 are omitted because these terms are multiplied by the

small disturber mass quantity mr. Because of this multiplier, second-order terms in the

angular coordinates would be considered third-order terms in magnitude relative to other

terms in the Lagrangian. Applying Eq. (40) to the position vector of the P_ disturber

results in

R_.i =r&. i +_., +rA. i +/i]-¢_r_j + l,]-'_s_Af)_..r_k (58)

The approximation for the position of the P'_ disturber mass is substituted into the

gravitational potential energy expression for the P'_ disturber mass and used to form the

Lagrangian given in Appendix A.

6.3 Dissipation Function

The dissipation functiongiven in Eq. (22) contains the quantities {de } and

{ID_ }. These quantities are time varying relative to an observer in the local orbital

frame, due to the perturbed angular motion of the rack and station. The elements of the

vector {d_ } transform in a manner identical to the transformation given in Eq. (47).
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Sincethe componentsof thevector dNaretimeinvariantwhenresolvedin therack

body-fixed time, thetransformationis

Thequantity {DL} canbe transformedin asimilar fashion.

Theexpressiongivenin Eq. (59) canbesubstituted,alongwith thetransformation

for {DL}, into the(relative)velocity term from Eq.(22). If thesesubstitutionsaremade

andthe velocity is expandedusingEq.(40), theresultingapproximationfor therelative

velocity betweentherackandthestationis

_., = _fR.,+ doL_.,j/j_AfJ_.k -_, -D_.,jl_'SEAOS.k (60)

Since the relative velocity term is multiplied by itself (via the damping matrix) in the

dissipation function, the expansion given above has only been carried out through the

first-order terms. Inclusion of higher order terms would result in third- and fourth- order

terms in the dissipation function. Therefore, the expansion given in Eq. (60) is

considered sufficient for the purpose of this study. Furthermore, inclusion of small angle

correction terms for the transformation of the quantities [CTRN N] and [CTOR_ ] results in

third order terms in the dissipation function and these terms are therefore omitted. The

final form of the dissipation function is given in Appendix A.
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7. Presentation of the Rack Equations of Motion

7.1 Translational Equations of Motion

For the purpose of deriving the equations for the perturbed motion of the rack, the

Lagrangian and dissipative function are formed from those energy expressions that

include the set of generalized coordinates {ar_ } and {ae_}. Substituting the expansions

given in the previous chapter, a suitable form of the Lagrangian and dissipation function

is derived so that Eq. (1) may be directly applied. Lagrange's equations for the

translational motion of the rack are then given as

d( 0L I aL OF

_-L_J aar_,x _ a_.z-0 (61)

where X counts from 1 to 3 and all forces acting on the rack are derivable from the

Lagrangian and the dissipative function so that Qx = 0 for all _.. The final forms of the

Lagrangian and the dissipative function used in Eq. (61) are included in Appendix A so

that the origin of specific terms appearing in the final equations of motion may be traced.

Indicial form is retained in the equations of motion so that the progression from Eq. (61)

to the terms appearing in these equations may be followed.

Carrying out Eq. (61) yields the following indicial terms:

dt _,0at_.x) 0art. x + 0_t. _ -

_M[i:CL,_+ " L .L +S_.jkg2jrcM.k +2Szjkg2jrcM, k Szjkf2jS_g2=rcM,n) (a)MR
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" L

(-L L )+ M R arg, x + 8Xikg'2jarg. k + _MX_-2jarg,k + EXjXk'-2jt;kmakr_mal'RLn

P ..L I_ " L + .L+Zmp(rc_,x + X;X_r'2jrC_M.k2gMxf2jrcT_a,, gX,X_"2j_kamL"2mr_t,n )+ L

" L

exjxf2jar_, k + gXjkf2jArR, k gXjXf2jgkmf2m_rR._)

+Xm_Z_'_t__ '_ _ +2_AO_m_.k+_0_.r_,)v _'J _ v'j +gJmkAOg'mrv'k , , R .-R

+ Additional forces on rack due to coupling between orbital motion and motion of
disturbers relative to the rack center of mass

+E KTRNL " L Llv,_ _._ tArR_- _s.i)
N

N

+E
N

+X
N

+E
N

Z K L r]L ]L/RE AAR-- TR_ N,_ _ oN,ij'jk _'-'av R,k

KTRN L,k i r'} L IL/SE $_ oN,ij'jk Aes,k

K L LTRN _,xi ALo_,i

Z L L IL/_AAg- C"r_ N.xid_,ii-jk _-a''" a,k
N

_ _'Lij_ ji '---'v S, k
N

( ) x (L + ,,))L L _E mr rRE A + ArRA + P.x + xj _ P,j + _kjmAOg,ml'P,k

+ +

+
L P,E Z mpl'&,x 2_EMR( L L )blEMRr&,x v rRE,X + ArR. x

rCMI _ 3

for k=l,2

for ;L=3

me rRX,X + ArR, x + rp,j + 8kjmAOR.mrig.k

Co)

(c)

(d)

(e)

(0

(g)

(h)

0)

(J)

(k)

(1)

(in)

(n)

(o)

(P)

(o3
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Discussion of Terms

In the following discussion, the terms (a) through (m) (presented above) are

discussed individually. Physical interpretations of the terms are given along with a

discussion of the significance of the terms in the context of the microgravity environment

or their relative size in comparison to other terms. In cases where, based on an order of

magnitude study, a given term is found to have negligible impact on the microgravity

environment inside the rack or is sufficiently small in comparison to other terms, the term

is omitted from the final equations of motion, which will appear in Eq. (73). When

practicable, the equivalent vector or matrix expressions are given for the indicial

expressions.

(a)

--L " L .L + L
MR (r_,x + _Xj'knjrcM.k + 2Exj_'2jr&.k SXjk_2jE_Tm_2mrcM.= )

-I -L +fi _xr&_M R +_x r& +2hx r& x

The terms in parentheses represent the total acceleration of the composite center of mass

measured inertially but transformed to the local orbital flame. Eq. (38) shows that if the

external forces on the station are small, the inertial acceleration of the system in orbit is

nearly canceled by the acceleration due to gravity given in the first term of (q).
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Co)

• •

The spatial separation of the rack from the composite center of mass results in the quasi-

steady forces given in Co). The first term in the parentheses is the tangential acceleration,

which is negligible due to the small magnitude of _. The two factors contributing to the

rate of change of the orbit rate are the orbital eccentricity and the external forces such as

aerodynamic drag. However, the effect of the external forces on _ is negligible

compared to the effect from the orbital eccentricity. Typical eccentricities of the Space

Shuttle and the MIR Space Station (e _ 0.001 ) result in magnitudes of _ that are on the

order of 10 -9 rad/sec _. Using this value for the magnitude of _, and considering that the

maximum distance of any ARIS-fitted rack from the composite center of mass of the

system is approximately forty feet, maximum accelcratiom of only about 10 -9 go would

be experienced at the science location due to the tangential acceleration effect. Since the

eccentricity of the typical ISS orbit is expected to be even smaller than the typical Space

Shuttle and MIR orbits, the tangential effect can be omitted.

The second term in Co) represents the centripetal acceleration that is due to the (once per

orbit) revolution of the rack about the system's composite center of mass. The centripetal

acceleration is a significant factor in the quasi-steady acceleration environment at the

science location. An order of magnitude study shows that centripetal acceleration can
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resultin accelerationsat thescience location of 1.2x 10-7 go for every meter of separation

between the microgravity rack and the system's composite center of mass. Because of

swayspace limitations, isolation of the experiments fi'om this type of disturbance is not

achievable.

(c)

MR _ + _j_r_..k + 2_j-kff2j_ri. k + _jk_j_.f2,_,xr_L _

The terms in parentheses represent the inertially measured, perturbed acceleration of the

rack, transformed to the local orbital flame. The first term is the linear acceleration of the

rack. The second, third, and fourth terms represent the tangential, Coriolis, and

centripetal accelerations respectively. Although orbital forces are many times thought of

as quasi-steady disturbances, the terms represented in (c) can operate in the vibratory

frequency range. The tangential acceleration is negligible due to the small magnitude of

f2. The centripetal acceleration arising from the perturbed motion of the rack is most

significant at quasi-steady frequencies, where the pitch, yaw and roll of the station carry

the rack a maximum distance from the equilibrium position. Assuming nominal

operating conditions on the station, order of magnitude estimates for the centripetal

acceleration represented in (c) show that the upper limit of this term is approximately

3-4x10"g go- This value represents a small portion of the microgravity acceleration

allowance in the quasi-steady frequency range and is therefore omitted from the final

equations of motion presented in this paper.
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The Coriolis term deserves consideration because it does impact the simulation results

presented in this paper. In the Coriolis term, the set of coefficients 2MRe_.j_f2 j are

multiplied by the perturbed velocity states • L_,k SO that, in the equations of motion, these

coefficients would be added directly to the off-diagonal elements of the aggregate

damping matrix _ [C'mS_ ] given in terra _m) above. Depending on the onentation of
N

the ARIS rack under consideration, the largest Coriolis coefficient could be a full order of

magnitude larger than the various off-diagonal damping coefficients. Using the

estimation for the damping matrix given in this paper (see Appendix D) and assuming a

full set ofumbilicals, the Coriolis coefficients will always be a full order of magnitude

less than the eigenvalues of _ [CTRNs ]. Although the Coriolis term is not included in
N

the final equations of motion presented in this paper, the possible impact of this term to

the simulation results should be noted. Further discussion regarding the effect of the

Coriolis term is given in Section 8.4, where closed-loop ARIS attenuation results are

presented.

(d)

_mp (r_, x + • L 2 • L -t- L--L _Xj.k_2jr_,_.k + 8xj_2jr_. k Exj_f2jEk,,,,k,..2mr_.n)

)-'_.mp + fix rc_ ×rc_ +fix
P

This expression accounts for the force induced on the disturber masses due to the orbital

motion of the composite center of mass. This force is nearly balanced by the force due to
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gravity at the composite center of mass (second term in (q)). Note that any force on the

disturber masses results in an equal and opposite reaction force on the rack and is,

therefore, present in the equations of motion for the rack. Since all of the quantities in (d)

are assumed known, these forces could be moved to the right-hand side of the equations

of motion, to become forcing functions of opposite sign (direction).

(e)

P P

These terms account for the quasi-steady tangential and centripetal forces acting on the

disturber masses due to their spatial separation from the composite center of mass. The

tangential effect is negligible because of (among other reasons) the small magnitude of

2.

f2. The more significant force is the centripetal force. Assuming a full complement of

disturbers, the maximum acceleration that the centripetal force term in (e) could induce in

a rack is several orders of magnitude less than the micro-g level. Considering that the

disturber mass is normally taken to be 0.5% of the mass of the rotating part (see

Appendix C), the mass ratio between the disturber masses and the rack mass is very

small. Therefore, the terms in (e) can also be neglected based on a comparison with the

terms in (b), given above.
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' (0

P

The expression (f) represents the forces induced on the disturber masses due to perturbed

motion of the rack. These terms are negligible in comparison to the terms in (c) because

the masses of the disturbers are small compared to the mass of the rack (see Appendix C).

(g)

_m, l_'_:''_ + "'_ _ "_. -_ _ --_
P kj _rp,j 8JmiAOR,mrp,k + 2ej=kAOR mrP k + 8j=IAOR,mrp,k )

where

The first term in par_theses represents the linear acceleration of the disturber masses

measured relative to an observer in the rack body-fixed flame. The second and third

terms in (g) are the tangential and Coriolis terms respectively and result from the rotation

of the disturber masses about the rack center of mass due to the perturbed rotational

motion of the rack. Of these two terms, the Coriolis term is the most significant.

Assuming a standard compliment of onboard disturbers, the Coriolis term is estimated to

be at least one order of magnitude smaller than the first term in (g). The final term in (g)

represents a first order transformation of the disturber force from the RF to the REF.
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Assumingastandardcomplementof onboarddisturbers,all in phasewith eachotherand

operatingatpeakforce input,theforcesrepresentedby the last term in (g) areat leastone

orderof magnitudesmallerthantheforcesinducedby theumbilical andactuator

assembliesdueto perturbedrotationof the rack(givenin (j)). For the purpose of this

study, only the first term in (g) is retained in the final equations of motion presented in

Eq. (73). Regarding the terms in (g), the vector equivalent of the indicial terms in

parentheses is given but the subsequent transformation denoted as l_ _ would be

otherwise represented as a matrix multiplication.

Ca)

Additional forces on the rack due to coupling between orbital motion and motion of

disturbers relative to the rack center of mass.

Because disturber masses are located at some distance (no greater than one meter) from

the center of mass of the rack and have velocity relative to the rack CM, they experience

rotationally induced forces due to orbital motion that are different from those experienced

at the center of mass of the rack. An example of one of the terms in 0a) is the centripetal

force on the P'_ disturber mass due to its spatial separation from the rack center of mass,

given as

_-'_mp(_ × (_ × _p))
P

The force terms in Ca) can be neglected because the magnitudes of the reaction forces on

the rack are several orders smaller than the forces induced by the rapid rotation of the

disturber masses inside the rotating equipment (given in the first term of(g)).
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(i)

E L L L

N N

The terms in (i) represent the restoring forces in the elastic elements arising from the

relative perturbed displacement between the rack and station.

O)

_-_K L a_L ]L/RE L- TRNs._ _o_,ij'j'k AOR.k

Expression (j) accounts for the elastic forces arising from the rotation of the rack about its

own center of mass. This rotation results in translation of the umbilical and actuator

connection points that induces a restoring force in the elastic elements.

(k)

E KTRN_,_iD_N,ij'j_ "-''S.k = Z s D.N l A0 s
N N

Expression (k) is similar to (j) but applies to station rotation about its own center of mass.

(i)

_"_ K L L

N N

The term (1) represents a small elastic force thincounteracts the orbital forces on the rack

in the equilibrium configuration.
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(m),(n), (o)

These terms are similar to (i), (j), and (k) but represent forces induced by the damping

effect of the umbilical and actuator assemblies.

(p)

IxEMR(rL,x+ rRL,z)/XEZ, L L + lx j rpjmp rgE,X + ArR. x + s_mAeR,=rp, k

for X=lor2

The terms in (p) are gravity gradient terms thatresult from the spatial separation of the

rack and the disturber masses from the composite center of mass of the system. The

terms in (p) are given for the cases in which X takes the value of either 1 or 2, which

correspond to the x and y directions of the L flame respectively. Just like the centripetal

force described in (b), the gravity gradient force is a significant factor in the quasi-steady

environment at the science location. The gravity gradient force arising from the

perturbed displacement of the rack can be omitted in the final equations of motion

because this force results in rack accelerations that are small compared to the micro-g

level. The entire second term in (p) is negligible because it results in accelerations in the

rack that are of the same order of magnitude as the centripetal term given in (e) (several

orders of magnitude less than the micro-g level).
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(o3

L  EY mprL, 
_EMRr_._ p

_t_MR(r_, x + p (L L -L/_/ R R R))mp r_, x + arLx + t_ [ri, j + _tsmAOR.=ri.k

for _.=3

For the case in which X takes the value of 3 (corresponding to the nadir direction) the

central gravitational force terms appear in the equations of motion. These first two terms

are nearly balanced by the terms given in (a) and (d). The last two terms represent the

gravity gradient force along the z direction. Consistent with the result in reference 3, the

magnitude of the gravity gradient force along z is twice that of the x and y directions.

Just as in (p), the entire last term in (q) can be omitted and the gravity gradient force

arising from the perturbed displacement of the rack is also negligible.

Force per Unit Mass at the Composite Center of Mass

Utilizing the equations of motion given in vector F_x/. (38), the terms in (a) and (d)

along with the central force terms of (q) can be combined to give
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• -L " L • L _ _.jk _ j _ lmm_-_ m r(2_M, n )M R (r_z + _xj_fajrc_,k + 2_xj_fajr_, k + L

(L L )+ _-_mp r&._ + _x,_f_jr&.k + 2_x,_f2jr&. k + _j_faj_ffa=rL..
P

L ,EY'_mprL X
_EMRr&,x p

I ,z)= MR+ mp M-'_

(62)

FI_XT .;t.

where is recognized as the acceleration of the composite center of mass due to
i TOTAL

forces external to the station/rack system. For the purpose of this study, the external

forces are considered to be quasi-steady in nature and of constant magnitude and direction

over the time interval of interest. This assumption is justified because the vibratory

microgravity environment, which is the main subject of this paper, includes oscillatory

behavior with a frequency content only as low as 0.01 Hz. The implication is that the

longest time window of interest is about 100 seconds, which is a small fraction of the

5,400 second orbital period. Assuming a low eccentricity orbit, the station altitude

changes little during this 100-second time interval, and the system covers only a small

portion of the total orbital distance. Therefore, parameters such as atmospheric density

and solar radiation incidence are assumed to remain constant over this time interval.

Equilibrium Force Balance

To this point in the paper, it has been assumed that the orbital path of the

composite system could deviate from the nominal circular orbit that defines the

equihbrium configuration of the system. When reboost maneuvers for ISS are performed,

a circular orbit will be targeted, but this orbit can only be realized to within a certain
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tolerance. Although external forces result in orbit decay and increasing orbit rates, it has

been assumed that the altitude and orbit rate of the system remain unchanged due to these

factors over the time intervals of interest. The assumption that the ISS orbit will not be

perfectly circular after reboost results in tangential acceleration terms in the equations of

motion because the time rate of change of the orbit rate is assumed to be non-zero.

However, the tolerance on reboost altitude is small enough that the time rate of change of

the orbit rate due to orbital eccentricity is very small (see explanation for term (b) above).

Because the deviation of the station's low eccentricity orbit from that defined for

the equilibrium state (see Section 4.1) is so small, it is permissible that the altitude, orbit

rate, and external forces for the equilibrium orbit be used to estimate the quasi-steady

forces encountered in the actual station orbit. The dominant quasi-steady forces can be

accounted for by using the parameters from this idealized orbit. Furthermore, consistent

with the discussion of terms in the translational equations of motion, the orbitally induced

forces on the small disturber masses are negligible because the accelerations induced in

the rack due to these forces are several orders smaller than the micro-g level.

Given the assumptions stated above, several terms can be omitted from the

equations of motion. Those omitted include any term containing components of the

vector _, all of the terms in (e), (0, and (la), and the disturber mass gravity gradient

terms in (p) and (q). Using steady-state parameters from the equilibrium orbit to estimate

the quasi-steady forces leads to an equilibrium balance of force terms that cancel out of

the equations of motion. The equilibrium condition can be stated as
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x L ( )KTRNN._ AI-oN._ + M R E_.j_fi_=,=g2mr_., +
N

J- MRFzx.r __EMRr_.x

[_c_13 + Mroa.m -0

(for _.=lor2)

(63)

For the case in which _, = 3, the third term takes a multiplier of-2, as in (q).

Mapping Station Motion to the Station/Rack Interface

The sum of the second term in (i) and the term in (k) is

_ _ KTRNL (arsL,{ L e,= S (64)-- DoN.ij l,'k A0s. k)
N

ifthes_ond-orderterm_re_g fromthet_fo=ation ofthe_omponent_{AO_}

from the SF to the SEF are neglected, then the vector expression associated with the

terms in parentheses in Eq. (64) is

arLs,i- D oNL,ij AOSL,j ::¢>_S + A0s x 5 o_ = AXN (65)

The relation given in Eq. (65) is recognized as a first-order approximation of the

displacement of the connection point of the N _ elastic element on the station due to rigid

body motion.

The calculation of certain parameters in the equations of motion for the rack is

made easier by introducing the vector don into Eq. (65) in the following fashion:

ArLs,i -- D oN.ijL AoL,j = ArLs,i + 8 ijxAOs,j (DoN,k- d oN.k)L L L + 8i#:AOs,jdoN.kLL = _kX N,iL (66)

where the first two terms to the right oft.he first equal sign are combined as

A1. L L ( g L ) g L g L (67)s,i + eijkAes,j DoN,k -- doN.k = AXN.i -- eb'kA0s,jdoN,k = ARN.i
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Thecomponents ARL._ represent a first-order approximation of the displacement of a

point in the vicinity of the rack as if that point were rigidly attached to the station. In

future discussions, the set of points tracked by the position vectors At_ L are collectively

referred to as the station/rack interface because they are ir_ the vicinity of the area where

the station connects to the rack via the umbilical and actuator assemblies. It must be

noted, however, that the set of points referred to as the station/rack interface are not

coincident with the umbilical and actuator connection points on the station.

Similar reasoning can be used for terms containing the rates of change of the

station states given in (m) and (o). From these terms, one obtains the velocity of the N-_

connection point on the station measured relative to the L frame, which is

9L = _ + ,,_s L x I)_ (68)

The velocity can be rewritten as

where

A__sL .at- AeL -L A_L L AOLj " L + "L Lx DoN _ s,i -- DoN,ij = ARN. i _iikA0s.jdor_. k (69)

• L ___L "L LARN.i - s,i +_:ijkAOs,j(DoN.k _" (70)_dor_.k)= vL "L Lr_,i - _ijkAes,jdo_,k

From a practical standpoint, the difference between the velocity represented by

the vector AR_ and that represented by Q_ is negligible. By substituting the relation

given in Eq. (69) into the equations of motion, however, the mathematics associated with

system damping is simplified because the damping matrix associated with the station

states can be made identical to the damping matrix associated with the rack states (see Eq.

(73)). To determine the elements of the aggregate damping matrix, it has been assumed
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thatthedampingmatrix is orthogonal to the modeshapes associated with the rigid body

motion of the undamped system. Given an estimation for the modal damping factors, the

physical damping matrix can then be calculated (see Appendix D). The ramification of

assuming equal damping quantifies on the fight- and left-hand sides of the equations of

motion is that the off-board environment, assumed known at some point on the station,

must be mapped to the station/rack interface before it can be used as an input to the

equations.

In this section a two-step process is used to map the off-board motion to the

station/rack interface. The off-board environment is assumed known at the center of

mass of the station and Eqs. (65) and (68) are utilized to map the motion at the station

CM to motion at the umbilical and actuator connection points. In the second step, the

calculated motion at the connection points ( AX_._ and V L_._) is used in Eqs. (67) and (70)

to solve for the motion at the station/rack interface.

In actuality the local motion of the station (at the umbilical and actuator

connection points) is due to flexure in the structural components of the station as well as

the rigid body contribution given in Eqs. (65) and (68). If the local structural behavior of

the station is assumed to be unaffected by the motion of the rack, then the local

displacements of the station can be assumed to include this structural behavior as well.

Generalizing the local station motion to include structural motion also means that the

vector quantity A0 s must be interpreted as the local rotational motion in the vicinity of

the connection points. Since low frequency global structural modes look like rigid body

motion locally, the station is assumed to be locally rigid and the rotational motion is
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assumed to be the same about all of the connection points. From this standpoint, the rack

becomes a six degree-of-freedom, harmonic oscillator, connected to a wall of infinite

mass via a system of spring/damper elements. The translational and rotational motion of

the station at the umbilical and actuator connection points is then treated as a

predetermined forcing function to the system, and it can be simulated by the correct

combination of translational and rotational inputs at the station/rack interface.

7.2 Rotational Equations of Motion

The derivationof the rotationalequationsof motion isobtainedby the application

of Eq. (I)to the Lagrangian and the dissipativefunctionshown inAppendix A. These

equationsof motion are

where all torques acting on the rack are assumed to be derivable from the Lagrangian and

the dissipative function.

Carrying out Eq. (71) yields the following terms

LaaoR._)aAoL +aaOL -

Ix. AO x. -- Ix.y.AOy. -- Ix.z.AO z.

+,,._,. +_.(I_.- i_..)ao,.+_z.(L.- L..)_o_.

+ [_;.(Iy.. - I,. )+ _.(I,.. - Iy. )]AO x.

'4- _"_X._'_y, (Iz,, --I,.),,,e,. + _,._z.(I,. -I,.)AO,.

+_"_y,(I x. +I z. -Iy-)AOz,, +_"_,,(I,.-Ix.-Iy,,)AO,.

(a) For X = 1 only

Permute indicesfor

_.=2 and _.=3

Orbitalcoupling terms involving

crossmoments of inertiahave been

omitted
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_m e r R lRE/L{r L " L .L + e_:_=e._x_jrc.M.k)Lde" _ P ).tr P.t ri Ix CM.i + _ijk_'_jrCM.k + 2eij_f)jr_,k
P

R RE,L " L _imm_'_m_n3.k_-_jr&.k )

P

+ eij_jm'Lk + 2e_f)jm'_, + e_,f2,_e_f)jm'_..k)
P

+ t;_=kBeR=rr_+2s=kAOR=rr _ + R ..R
P

+ Additional torques on rack due to coupling between orbital motion and motion

of disturbers relative to the rack center of mass.

+ _' KTORR_ (AeR.i- Aes,i)
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Discussion of Terms

In discussing the terms in the rotational equations of motion, the vector and

matrix equivalents are not given as they were for the translational equations of motion.

For the most part, the same forces (with the same vector and matrix equivalents) appear

in the rotational equations of motion, but they are subsequently transformed to torques

via a cross product operation. The reason is that the line of action of the various forces in

the system do not generally run through the rack CM and, as a result, various moments

are induced about the CM.

(a)

+ [g22y.(l:-I:)+ f22_.(I:-Iy.)]A0_.

+ £2,.f2.(I: -I x.)Aey.+ f2,.f2,.(I: -I,.)A0:

+f2y.(,,.+ 1:- Iy.)A0: + f'2,.(I,.-I:-I:)A0y.

This represents the inertial time rate of change of the angular momentum of the rack

transformed to the rack body-fixed frame. The equation is presented for rotational

motion about the x" axis only (Z, = 1 ). The equations of motion about the y" and z"

axes can be easily obtained by cyclically permuting the indices of (a).

For the purpose of presenting the equations of motion, orbital coupling terms involving

cross moments of inertia have been omitted. This representation is sufficient to show that
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only the first three terms in (a) need to be retained in the equations of motion for rotation

about the x" axis. The largest coefficients of the components of A0 R , appearing in (a),

are many times smaller than the stiffness coefficients given in terms (g) and (i) of the

rotational equations of motion and therefore have little impact on the dynamic model.

The coefficients of the components of A0 R , given in (a), are compared to the damping

coefficients given in terms (m) and (o). The coefficients appearing in (a) are found to be

approximately one order of magnitude less than the smallest eigenvalue of the damping

matrices given in (m) and (o). These findings suggest that the umbilical and actuator

assemblies induce torques on the rack that are considerably more significant than the

torques induced by orbital coupling terms. Therefore, the orbital coupling terms are not

included in the final equations of motion for the rack. Since the off-diagonal elements of

the moment of inertia matrix are smaller than those of the diagonal, orbital coupling

terms involving cross moments of inertia are also omitted from the final equations of

motion. The conclusions presented in this discussion are also valid for the equations of

motion for rotation about the y" and z" axes.

Co)

R R_.-.L " I. -t _m_-2mEnjx_jr_,k //_-'mvgx_rp.,l_ " (r_n,_.i+eij_f_jrd.M.k+2Eij, ff_jr_,4.k+ r
P

These terms represent the moment of the time rate of change of linear momentum (due to

orbital motion) of the disturbers about the center of mass of the rack. This torque is

nearly canceled by the torque induced by the action of the gravity force in (q).
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(c)

L

This is the torque induced about the center of mass of the rack due to the quasi-steady

tangential- and centripetal-type forces acting on the disturber masses. These torques are

negligible in comparison to the first term of (e) below and are, therefore, omitted from the

dynamic model.

(d)

"_-'m c rR l_L( ..L " L + .L
P .4- L_7_ v x_ v,t n [al'R,i +Sb_jAI'R,_ 2_ij'kf2jar_,k £i_m_r'_mEnjk_"_jArl_,k)

As the rack moves, it carries with it the disturber masses. Since the disturber masses are

not located at the rack CM, this perturbed rack motion induces torques about the rack

CM, which are represented in (d). These terms are negligible in comparison to the first

term of (e).

(e)

+ s_=_AOR...rrj , + 2s,==AOR_=rv_ + smAOR.=rp._)

The terms in (e) represent the time rate of change of the angular momentum of the

disturber masses about the rack center of mass due to their acceleration relative to the

rack CM. The terms in parentheses are identical to those presented in terms (g) of the

translational equations of motion. Consistent with the discussion of terms (g), the second
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and third terms in (e) (the tangential and Coriolis terms respectively) are omitted from the

final equations of motion presented in this paper. A comparison between the coefficients

of the components of A0 [ given in the last term in (e) and the eigenvalues of the

stiffness matrices given in terms (g) and (i) of the rotational equations of motion reveals

that the ratio between the largest coefficient in (e) and the smallest eigenvalue of (g) and

(i) is 0.07. For this reason, the last term in (e) is omitted from the final equations of

motion as well.

(0

Additional torques on rack due to coupling between orbital motion and motion of the
disturbers relative to the rack center of mass.

The set of torques described in (f) are due to the forces described in term 0a) of the

translational equations of motion. The relative positions between the disturber masses

and the rack center of mass act as moment arms so that forces at the disturber mass

locations result in torques about the rack CM. Just as the force terms in 0a) of the

translational equations are negligible, the torques described in term (f) are also negligible.

(g)

KTORR _(&0RR ,- AOsR.i)
N

The expression (g) is the restoring torque induced in the umbilical and actuator

assemblies due to relative angular displacements between the rack and the station.
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(11)

"xi --oN.ijKTR-NN,jk(ArRLk- S,k)
N

Since the elastic elements tethering the rack to the station are not connected to the rack

center of mass, relative linear displacements between the rack and the station induce

moments about the rack CM, which are represented by (h).

(i)

--E IREILrlL I_'TI_M L ¢'!L IL/REAAR
*'M _ oN,ij ...... N ,j3¢"_ oN,kat*mn _VR,n

N

When the rack undergoes angular displacements about its center of mass, translational

displacements of the umbilical and actuator connection points result. These

displacements induce restoring forces at the connection points and torques about the rack

center of mass given in (i).

0)

E IRE/L,.IL L L LtSE S"Li "_oN,ij KTRNNaxDo_,z=/_ Aes.o
N

The expression (j) is similar to expression (i) but applies to the angular displacement of

the station about its center of mass.
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E lI_/Lrl L L L"xi _ oN,ijKTR_NN,j_ AT;o_,k
N

When the system is in the equilibrium configuration, the quasi-steady forces, which are

assumed to act at the center of mass of the rack, result in a small translational

ctisplac_'nent of the rack from the uns_etched position. This displacement resul_ in

r_toring forces in the umbilical and actuator assembli_ that induces small torques, (k),

about the center of mass of the rack.

(D

KTOR N,Xi A0oN.i

N

Term (1) represents a restoring torque in the umbilical and actuator assemblies due to the

small angular extension of these elastic elements when the system is in the equilibrium

configuration.

(m), (n), (o) and (p)

These terms are similar to (g), (h), (i), and (j) but for moments induced by dissipative

forces.
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(q)

P

R -RE/L L

mv_r_;,,t,_ rc_,_

The action of the gravitational force on the disturber masses results in a torque about the

rack center of mass that is nearly canceled by torque terms given in (b).

(r) and (s)

and

3g_-"
P

Expressions (r) and (s) represent torques about the rack center of mass due to gravity

gradient forces acting on the disturber masses. These torques are negligible due to the

small mass of the disturbers.

Rewriting the Rotational Equations of Motion

As in the case of the translational equations of motion, the force per unit mass

relation given in vector Eq. (38) may be utilized to combine terms from the rotational

equations of motion. The terms in (b) along with the terms given in (q) can be combined

to give
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(72)

- MTOTAj"

where ,_r_J_"-F_r,i is recognized as a small quasi-steady torque about the rack's

center of mass.

In the equilibrium force balance for the system, the orbitally induced forces on the

small disturber masses are negligible because the accelerations induced in the rack due to

these forces are several orders smaller than the micro-g level. A similar assumption is

made concerning the orbitally induced torques on the disturber masses. This assumption

leads to the omission of the small quasi-steady torque term on the right-hand side of Eq.

(72) as well as the torques represented in terms (c), (d) and (f) of the rotational equations

of motion. The torques given in terms (k) and (1), along with the last term in (a) (where

indices are permuted to get the appropriate y- and z- direction term), are then assumed to

cancel each other in the rotational equations of motion, so that an equilibrium torque

balance can be formulated for the system.

The rationale used in mapping the station motion to the station/rack interface can

be used in the rotational equations of motion as well. The station displacements from

terms 0a) and (j) can be combined (as can the station rates from terms (n) and (p)) to

reflect motion at the interface. Just as in the case of the translational equations of motion,

the off-board environment, assumed known at some point on the station, must be mapped

to the station/rack interface before it can be used as an input to the equations.
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7.3 Equations of Motion in Matrix Form

The primary flame of reference up to this point in the development has been the

local orbital flame. This flame was chosen because of the practical relations of its axes to

the orbital motion and the intuitive form of the gravity gradient terms. Since the

objective of this research is to build a simulation capability for the ARIS, the rack body-

fixed frame provides a more suitable frame in which to write the final form of these

equations. The reason is that the RF is local to the rack motion and because ARIS

controller hardware, such as the accelerometers and actuator pushrods, are assumed fixed

relative to this flame.

The vector and tensor quantities given in the translational and rotational equations

of motion in Sections 7.1 and 7.2 may be transformed to the REF through the time-

invadant transformation matrix I/RE/L]. II1 the subsequent transformation from the REF

to the RF, the small-angle correction terms are omitted because these terms result in small

second-order terms in the equations of motion. Under this condition, the translational and

rotational equations of motion can be represented in the matrix form to be given in Eq.

(73). In this equation, all rack and station states are measured relative to the REF but

the antisymmetric second order tensor associated with the position vector [_ and is used

to calculate the vector cross product of _ and _.

Eq. (73) reflects the assumption that the coupling effects between the orbital

motion of the system and the perturbed motion of the rack are negligible so that the

locally observed motion is approximated as that exhibited by the equivalent inertially-
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basedsystem. Although quasi-steady orbital-induced accelerations must still be added in

order to compute the inertial acceleration of the rack, these accelerations can be assumed

independent of the local perturbed motion of the rack. The resulting equation of motion

in matrix form is

+
N

R R

N

T R R R ][ "_[d_] [CTR_][dN]+E[CTOR_ La0.J
JJN N

+

E [KTRN R ]
N

N

= IEd J'1]{}_rd , I'[KT_" Ira_ Z [KTORNR AOR

N

N

rR R T

.." ]: }N

] [KT_,I[d_]+Z[K,o_, L_o,
N N

(73)
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7.4 Calculation of Inertial Acceleration

The equations of motion given in Eq. (73) are written in terms of accelerations

and velocities measured relative to the REF. From the standpoint of maintaining a

microgravity environment inside the rack, the accelerations must be known in the inertial

frame because the physical processes associated with the various microgravity

experiments are affected by the total inertial acceleration. The inertial acceleration is

(74)

where _ is the total inertial acceleration of the rack center of mass, _m is the inertial

acceleration of the point RE, and awm is the inertially measured acceleration of the rack

center of mass relative to the point RE.

The total acceleration of the point RE is

a_ = ar.x'r + actor + aGG (75)

where aEx-r is the acceleration due to the external forces, _c'_rn is the centripetal

acceleration due to the once per orbit rotation of the point RE about the composite center

of mass, and ac_ is the acceleration due to the gravity gradient effect. The tangential

acceleration is not included because it is negligible. The centripetal, gravity gradient, and

external forces were derived in the equations of motion for the rack and discussed in

Section 7.1.

The acceleration of point RE due to the action of external forces is

_'EXT -- MTOTAL

(76)
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where -- is thesamequantitygivenontheright-handsideof Eq.(38). Although
M TOTAL

the components of the vector aEx-r are assumed to be known (resolved) in the REF, they

must be resolved along the rack body-fixed frame if they are to be added directly to the

acceleration components computed in Eq. (73). For the purpose of this study, the small-

angle correction terms resulting from the transformation of the quasi-steady accelerations

from the REF to the RF are negligible because changes in orientation of the rack result in

restoring forces in the umbilical and actuator assemblies that are much greater than those

resulting from the small correction of the quasi-steady force terms.

The centripetal acceleration of point RE is given in term (b) of the translational

equations of motion as

(77)

where the components are again assumed to be resolved along the REF axes. Just as in

the case of aFxr, small angle correction terms in the transformation of the centripetal

acceleration from the REF to the RF are negligible.

The gravity gradient acceleration, resolved along the REF, can be computed from

IaGG,x ]

a RE ={ Go} rl ' l a

[ac_._J

(78)

where aGo.K, ac_.y, and ago_ are the components of the gravity gradient acceleration

resolved along local orbital frame. These components are taken directly from terms (p)

and (q) of the translational equations of motion and are
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As in the case of aEx-r and ace-r, correction terms in the transformation of the

components of the gravity gradient acceleration from the REF to the RF are omitted in

the calculation of the inertial acceleration of the rack.

Consistent with the discussion in Section 7. l, the orbital coupling terms between

the orbital motion and the perturbed rack motion (given in (c) of the translational

equations of motion) as well as the gravity gradient acceleration arising from the small

displacement oft.he rack from its equilibrium position (given in (p) and (cO of the

translational equations) are considered negligible. The inertial acceleration of the rack

relative to the point RE is approximated as

aR/RE _" A_R RE

The approximation given in E¢I. (80) states that the inertially measured acceleration of

rack, relative to the point RE, is approximated by the locally observed, perturbed

acceleration.

Given the assumptions above, the difference between the locally observed

perturbed acceleration of the rack (computed from the equations of motion given in Eq.

(73)) and that pertinent to the inertial acceleration is the simple addition of a group of

quasi-steady acceleration terms that are not functions of the generalized coordinates and

(79)

(8O)
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can be considered predetermined functions of time. Since small-angle correction terms in

the transformation of the quasi-steady accelerations arc negligible, knowledge of the

quasi-steady accelerations resolved along the REF is sufficient for this study. The quasi-

steady accelerations are considered constant in magnitude and direction over the time

interval of interest. These accelerations are then added directly to the perturbed

accelerations fi:om Eq. (73) so that the total inertial acceleration can be computed.
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8. SIMULINK Version of the Simulation

The purpose of this chapter is to present the SIMULINK version of the ARIS

simulation and to show the predicted attenuation performance of the ARIS using results

from this simulation. SIMULINK is s_>:tware for use with MATLAB, a mathematics

software package sold by The MathWorks, Inc. (The MathWorks, Inc., S/MUL/NK Users

Guide, 1992). SIMULINK provides an environment for the modeling of dynamic

systems and controllers. The convenience of SIMULINK derives from its graphical user

interface, which allows the building of simulations using block diagrams in conjunction

with a variety of pull-down menus. These menus also provide the user with a variety of

analytical tools. Additional analysis can be carried out from the MATLAB environment

with MATLAB executable files or directly from the command line.

Section 8.1 shows the implementation of the rigid body equations of motion for

the rack (Eq. (73)) in the SIMULINK environment. Block diagrams from the

SIMULINK simulation are presented that show the simulation architecture and

information flow. In Section 8.2 results from the simulation presented in Section 8.1 are

discussed. These results apply only to the passive system (ARIS controller inactive).

Section 8.3 details the ARIS controller simulation and shows integration of the controller

simulation with the rigid body model presented in Section 8.1. Section 8.4 presents

results for the closed-loop system (ARIS active).

94



8.1 Block Diagrams of the Rigid Body Rack Model

The equations of motion given in Eq. (73) are conveniently represented in block

diagram form and shown in Figure 10 and Figure 11. The high-level block diagram of

Figure 10 shows the complete simulation for the rigid body rack. Multiplexer (Mux) and

Demultiplexer (Demux) blocks are utilized to reduce the number of connections needed,

therefore reducing the complexity of the diagram. The bold lines represent the

transmission of vector information. In this case, the bold lines represent the flow of

vector information having six elements, one for each degree of freedom of the rack.

Complexity can be fia_rther reduced by the use of superblocks, in which a number of

individual blocks can be grouped together. Examples of these superblocks are the Station

Interface block and the Rigid Rack block.

I

Internal Disturbance Input . I _

, Rack CG Accel

Theta-z

DC Acceleration

Figure 10: High-Level Block Diagram for Rigid Body Rack Dynamics
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Theblock diagramof Figure 11 shows the blocks that are part of the RigidRack

superblock. Figure 11 is the wiring diagram that carries out the matrix operations on the

le/t-hand side of Eq. (73). In this figure, a number of statespace blocks are used, and

these blocks all carry the label

X' = Ax+Bu

y = Cx + Du

For the simulation presented in this paper the statespace blocks are used to carry out

matrix multiplication by setting the elements of the A, B, and C matrices to zero and

setting D equal to the matrix that is multiplied by the vector input. In the block labeled

Stiffness, the D matrix is set equal to the aggregate 6x6 stiffness matrix. Therefore the

statespace blocks actually have no states associated with them. The output of the Rigid

Rack superblock is the pertm'bed acceleration of the rack, measure relative to the REF and

resolved along the rack body-fixed flame. The stiffiaess, damping and mass parameters

needed to run the simulation are generated in the MATLAB executable file

SIM_BSLN.m, which is presented in Appendix F.
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Damping, c

Rack P ositio n

Figure 11: Sub-Level Diagram of the Rigid Rack Superblock

The Station Interface superblock, shown in the high-level diagram of Figure 10,

converts station accelerations at the station/rack interface into force inputs to the rack.

Upon entering the Station Interface block, the station acceleration signal is directed along

two different paths. Along one of the paths the signal is integrated twice to calculate the

station displacement vector and this displacement vector is subsequently multiplied by

the aggregate stiffness matrix to produce a force input. Along the other path the station

acceleration signal is integrated once to compute the local station velocity and this

velocity vector is multiplied with the aggregate damping matrix. These force inputs are

then added together and routed into the Rigid Rack superblock.

8.2 Results for the Passive System

The first results to be presented from the rack model are those for the passive

system response. The passive response is defined as the response of the system to various

inputs when the umbilical assembly is the only connection between the rack and the
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station. The actuators arc assumed not to be connected to the rack and the ARIS

controller is therefore rendered inactive. All of the results presented in this section are

those for the baseline heavy rack with a fall set ofumbiIicals. The physical parameters of

this system are given in Appendix B.

Off-Board Disturbance Response

Figures 12 and 13 arc transfer functions that show the response of the system due

to acceleration disturbances at the station/rack interface. The transfer functions show the

gain in decibels of the rack acceleration output to the station acceleration input. In

generating the transfer function in Figure 12, the station input is assumed to be an x-

directional acceleration input (in the rack body=fixed frame). This assumption is

equivalent to setting the components of A§ s and A_ s to zero in Eqs. (67) and (70).

These equations show that a purely x-direction input at the station/rack interface is also

equivalent to a purely x=direction input at the umbilical connection points on the station.

The output for the transfer function in Figure 12 is the x=direction rack acceleration.

Although the station is assumed to be locally rigid, the environment at the

umbilical connection points is assumed to be the result of strucaLral motion of the station

as well as rigid body motion. The collection ofumbilicals are taken as one aggregate

assembly, possessing an aggregate stiffness, with the vector do)_ ()_=io_)y)pointing to the

centroid of the assembly connections. The reason for this is the translational and

torsional stiffness parameters used by the simulation to generate the 6x6 stiffness maaix

are supplied by the ARIS developers as total stiffness quantities for the entire assembly.
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Figure 12revealsthatresonantpeaksexistatcertainpointsin thefrequency

spectrumat whichtheoff-boardaccelerationenvironmentis amplified. Theseresonances

areassociatedwith therigid bodymotionof therackasit oscillateson theumbilical

assembly.Thefirst resonantpeakoccursin thevicinity of 0.07I-tzandresultsin an

amplificationof thestationenvironmentby afactorof (approximately)thirty. Multiple

resonancesoccurbecausetherack is amulti-degree-of-freedomsystem. If theresonant

behaviorof thesystemis notcontrolled,themicrogravityenvironmentinsidetherack

will notmeetthemicrogravityrequirementshowninFigure 2. At frequencieslower than

thefirst resonantfrequencyaunity transmissibility(zerodb) ispredictedbetweenthe

rackoutputandstationinput. Becauseof sway-spaceconcerns,this is adesirable

responsebecause,if the inputandoutputsignalsarein phase,therackmotion will track

thestationmotionandtheswayspacewill bemaintained.At frequenciesabovethe

highestresonantfrequency(approximately0.5Hz) thegaindecreases,at arateof about

40db/decadeupto 20 I-Iz,thenat arateof approximately20 db/decadebeyondthis point.

This change in slope is due to the damping property of the umbilical assembly.
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Figure 12: Onboard Response to Off-Board Acceleration: x-Direction

Figure 13 is a plot of the rack response due to a combination of translational and

rotational acceleration inputs at the station/rack interface. This combination of inputs has

been chosen to simulate a pure rotational acceleration input at the centroid of the array of

umbilical connections on the station. The simulated rotational input is a unidirectional

rotation about the x axis of the rack body-fixed frame. The plot represents the gain ratio

of the angular acceleration of the rack about the x axis to the angular acceleration of the

station about the x axis. The station disturbance is transmitted to the rack via the

torsional stiffness property of the umbilical assembly. As in Figure 12, resonant peaks

can be seen at certain points in the frequency spectrum. These resonances are associated

with the (rotational) rigid body motion of the rack. At higher frequencies the transfer

function decreases with a slope that becomes shallower with increasing frequency. Just

as in Figure 12, this change in slope is due to the damping property of the umbilical

assembly.
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Figure 13: Onboard Response to Off-Board Acceleration: Theta-x Direction

Onboard Disturbance Response

To illustrate the passive response of the system to an onboard disturbance source,

the onboard forcing function given in Eq. (73) is assumed to be an oscillatory signal

originating from hardware mounted on the microgravity rack. In order to maximize the

torque input, the location of the disturbance source is chosen as the extreme upper comer

of the rack. Figure 14 shows the ratio of the magnitude of the x-direction acceleration of

the center of mass of the rack (the output in units of ft/sec 2) to the magnitude of the x-

direction onboard force (the input in units of lbf) as a function of forcing frequency.
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Figure 14: Onboard Acceleration Response to Onboard Force

In the low frequency ranges, the presence of the umbilical assembly helps to

isolate the rack from the acceleration effects of the onboard force. Between the frequency

ranges of 0.06 I-Iz and 0.4 Hz, the system undergoes resonant behavior associated with

the rigid body translation of the rack. The peak amplitude ratio occurs at approximately

0.07 Hz and nearly reaches the 0 db level. At frequencies above 1 Hz, the amplitude of

the rack CM acceleration is a factor of 35 dB less than that of the onboard force

amplitude, corresponding to the inverse of the mass of the baseline rack. Therefore, at

forcing frequencies above approximately 1 Hz the rack behaves as a free body in space.

102



8.3 ARIS Baseline Controller Simulation

The ARIS baseline controller simulation presented in this section was constructed

from a number of different sources. For the most part, the latest control law was pieced

together from information presented at the ARIS Critical Design Review (CDR), held at

the Marshall Spaceflight Center, in November, 1996. Other information on the controller

was obtained through communications with the ARIS developers and by reviewing

documents from previous design reviews and Technical Interchange Meetings (TIM's).

Although the controller design undergoes seemingly continuous changes, the controller

presented in this section is known to be quite current. The controller versions used for

the ARIS Risk Mitigation Experiment (RME) are discussed in Chapter 9 and these

versions differ from the base _ltne version presented in this chapter. The ARIS controller

is a state-of-the-art control system that employs a combination of acceleration, position,

and stiffness compensation control loops to maintain a microgravity environment inside

of an ISPR. Included in the position control is a non-linear anti-bump algorithm that is

not modeled in the simulation presented in this paper.

The block diagram for the baseline ARIS controller simulation is shown in Figure

15. The plant model for the rack (the Rigid Rack block) appears in the middle portion of

the diagram and is nearly identical to that presented in Section 8.1 and shown in Figure

10. One exception is that the an extra input path has been added to interface the plant

model with the ARIS controller. Another difference between the passive plant model and

the plant model used in the closed-loop simulation is in the stiffness and damping

matrices. In the closed-loop simulation the effect of the passive actuator stiffness and
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dampingmustbeaddedto that of the umbilical assembly. For the purpose of this study,

a 6x6 actuator stiffness matrix, computed in a MATRIX-X executable file provided by

the ARIS developers, has been utilized. MATRIX-X is a mathematics software package

that can be used to carry out the matrix calculations needed to generate all of the

parameters used in the ARIS simulation (Integrated Systems Inc., MATRIX-X CORE,

Document Number MDG014-010, 1990). The executable file was converted to

MATLAB format and has been included in the code in Appendix F. Since the time this

code was supplied by The Boeing Company, the geometry of the lower external actuator

pair was changed slightly in the baseline design to eliminate an interference problem.

This change is expected to have minimal effect on the aggregate stiffness and system

performance, but future work should include obtaining the updated stiffness model and

exact geometry of the actuator assembly. As in the case of the umbilical stiffness matrix,

the actuator stiffness is referenced to the rack body-fixed coordinate system and to inputs

at the station/rack interface.

Two separate outputs are taken from the plant model. The upper output is

directed into block Sum1 and is the predicted acceleration of the center of mass of the

rack. The acceleration signal is sent through the acceleration feedback loop (uppermost

loop) and operated on by the acceleration compensator. The lower output from the plant

model is a rack position measurement. In block Sum2 the perturbed displacement

between the rack and the station/rack interface is calculated. This relative displacement

information is required by the position control loop (lowest most loop) which maintains

proper swayspace between the rack shell and the wall of the station. The relative position
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measurementis alsoutilizedby thestiffnesscompensation feedforward loop (middle

loop).

When the computed acceleration of the rack center of mass enters block Suml, it

is added to the DC (quasi-steady) acceleration signal. As explained earlier, the quasi-

steady acceleration of the rack is considered independent of the rack states and constant

in magnitude over the time interval of interest. The total computed acceleration of the

rack center of mass is then forwarded to block Txtow which computes the accelerations at

the accelerometer head locations. The accelerations measured at the accelerometer

locations are different from those experienced at the center of mass of the rack because

the angular acceleration of the rack induces an additional translational acceleration

component at these locations.

Just as in the block diagram presented in Figure 11, the controller simulation uses

a munber ofstatespace blocks, of which block Txtow is an example. As described in

Section 8.1, these blocks are used to carry out matrix multiplication and have no states

associated with them. For the most part, the matrix contained in the block in the actual

simulation is the same as the name placed under the block, and these matrices are

generated by the MATLAB code in Appendix F.
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After the acceleration signal is passed through block T_ow, the acceleration

signals (now at the accelerometer head locations) are resolved along the accelerometer

orientations to simulate the measurement of the total acceleration. This procedure is

carried out in block Twtom. The computer code used to calculate the aecelerometer

location and geometry parameters was supplied by the ARIS developers. Since the time

at which this code was supplied, a change has occurred in the location of the upper

accelerometer assembly. Furthermore, since the time the code was supplied, an

additional accelerometer has been added to the production ARIS bringing the total

number of accelerometers to nine. Although there seems to be minimal impact to the

system performance, future work should include obtaining the latest code for generating

the accelerometer parameters in light of this design change.

The next block downstream in the acceleration feedback loop represents the

elliptic filter elements. The simulation utilizes a 2 na order filter to simulate the real

elliptic-type filter that is wired into the ARIS controller. The 2*a order filter is a good

approximator of the elliptic filter response up to about 10 I-Iz, at which point the transfer

function for the approximator diverges from that of the elliptic filter. The baseline ARIS

controller also utilizes an adjustable second order filter that is planned to have a natural

frequency set to 40 Hz when the ARIS is operational on the station. The block simulating

this element appears downstream from the elliptic filter block.

The acceleration compensator operates on the acceleration signal of the rack

center of mass resolved along the rack body-fixed frame so that the accelerations

measured by the accelerometers must be resolved back along this frame. This
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transformation is accomplished in a two-step process. Firstly, in block Tmtox, the eight

accelerometer signals are resolved along the rack center frame, which is a reference

flame with an origin at the geometric center of the rack. In the next step the signal is sent

into block Trctocm in which a small correction is made to the acceleration signal to

transform it from the origin of the rack center frame to the rack center of mass (the origin

of the rack body-fixed flame). In the simulation the Trctocm block contains the 6x6

matrix ctm, which is generated by the code in Appendix F. In the actual ARIS controller

the parameter ctm can be updated from measurements made by the payload evaluator (see

Section 3.2). Since the acceleration at the center of mass of the rack is a quantity of

interest, this signal is forwarded to an outport via a demultiplexer block that separates the

acceleration signal into its various components. The signal is also forwarded to the Gain

block, where the loop gain is set, and then forwarded to the acceleration compensator.

The Acceleration Compensator block consists of six identical cascade

compensators, each of which operates on one of the rack acceleration componeiats. One

set of compensators is shown in Figure 16. The compensator has five other branches (one

for each translational and rotational acceleration component) and they are all identical to

the one shown in Figure 16. The control methodology employed in the aceeleration

compensator is single input single output (SISO)-type control.

The output signal from the acceleration compensator block is added to the signal

from the position control loop in block Sum3 and the combined signal is multiplied with

the full 6x6 mass matrix to produce a set of force and torque commands. The signal is

then transformed back to the rack center frame in the block Tcmtorc. The Tcmtorc block

contains the matrix ctmi (generated by the code in Appendix F). The force commands are

108



then transformed to actuator commands in block Tdelxtou (the parameters of which are

referenced to the rack center flame). Before being forwarded to the plant as a controller

input, the signal is sent through the Actuator Dynamics block. In the current simulation

the ARIS actuators are assumed to be perfect actuators that force the rack in precisely the

manner instructed by the controller. In the actual system this approximation is probably

only valid within a limited frequency range because the actuators are mechanical entities

possessing their own dynamic behavior. The Actuator Dynamics block serves as a

placeholder in the current simulation and contains an 8x8 identity matrix. The actuator

force inputs are sent into the Rigid Rack block where the actuator signals are converted to

force and torque inputs, resolved along the rack body-fixed frame, via the block Tutox.

This block is not shown in any of the block diagrams but is generated from the code in

Appendix F.

(too 1Xs-_-o.4)
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Figure 16: One of Six Cascade Compensators from the Acceleration Compensator Block

When the total perturbed displacement between the rack and the station/rack

interface is calculated in block Sum2, the resulting position vector is forwarded to the

block Txtop. This block resolves the relative displacement along the direction of the

actuator pushrods, which are the locations at which the relative position measurements

are made. The signal is then sent through a series of low-pass filters before it is
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transformed to a relative displacement vector resolved along the rack center flame.

Downstream, the difference between the relative position vector and the position

command signal is calculated. At this point the signal is split, and goes to both the

position control block and the stiffness compensation block. The position control block

employs a proportional, integral, derivative ('PID) SISO-type control scheme and is

shown in Figure 17. The output from the position controller is then summed with the

acceleration feedback signal in block Sum3 and follows the path, already described

above, into the plant.

Zero-Pole Coe/ficien_.
P'--0.038

I)=6
_0

out_l Sum

Coe/fic_ents:
P=-O
D=O

_0.018

Figure 17: One of Six PID Controllers from the Position Control Block

The stiffness compensator is represented in the Stiffness Compensation block,

which containspk, a 6x6 matrix. One purpose of the stiffness compensation block is to

instruct the controller to create forces that negate the coupling effects of the umbilical

assembly. Therefore, the off-diagonal elements ofpk are set equal to the negative value

of the off-diagonal elements of the actuator and umbilical aggregate stiffness matrix (as

measured by the payload evaluator). The diagonal elements ofpk are computed such

that the natural frequency associated with each degree of freedom of the plant is adjusted
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to a predetermined value. The variety of facilities planned for use on ISS will require

variousumbilical configurations with varying stiffness properties. The stiffness

compensation loop will help provide for acceptable isolation performance in the face of

changing stiffness parameters. The control inputs from the stiffness compensation loop

are intended to make the rack behave as a decoupled system, all the modes of which are

equal to a predetermined frequency. Since the output from the stiffness compensation is

a force and torque output, the signal is added to the cumulative force and torque signal

from the other control loops and is sent directly to the Tdelxtou block, then forwarded to

the plant as a set of actuator inputs.

8.4 Closed-Loop Results

The resultsfrom Section 8.2 show thenatureof theproblem thatexistswhen the

rack istetheredtothe stationvia a passiveumbilicalassembly. The rackbecomes a six

degree-of-freedomharmonic oscillatorthatexhibitsresonantbehavior atcertain

frequencies.The resultsfrom the AR.IS simulation,presentedinthissection,predictthat

the ARIS willsuccessfullycounteracttheresonantbehavior of the passivesystem.

The resultspresentedinthissectionserve as examples of the predictedattenuation

performance ofthe ARIS. The resultsarepresentedon a SISO basis,meaning thatonly

one input/outputcombination isconsideredata time. However, taken as acollective,the

SISO resultscan provide a good understandingof the abilityofthe ARIS to attenuate

variousclassesof disturbances.The plantmodel used ingeneratingallplotsisthe

baselineheavy ISPR with a fullcomplement of umbilicals.The equationsof motion used

intheplantmodel are taken from Eq. (73)and, as mentioned before,the plantmodel used
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in the closed-loop simulation is very similar to that presented in Section 8.1. The

presentation of results begins with the response of the system to off-board disturbances (a

class of disturbances against which the ARIS was specifically designed to isolate) and

concludes with the response of the system to onboard disturbances.

Off-board Disturbance Attenuation

Figure 18 shows the transfer function between off-board translational

accelerations (the inputs) in the rack's body-fixed x, y, and z directions and the x-

direction acceleration of the rack CM (the output). Figure 19 shows the phase angle

between the off-board acceleration inputs and the rack CM acceleration. The off-board

station disturbance inputs are pure translational accelerations at the station/rack interface.

According to the transformations given in Eqs. (67) and (70), pure translational inputs at

the station/rack interface transform as pure translational inputs at the umbilical and

actuator connection points on the off-board side. In Figures 18 and 19 the system

performance prediction is shown between the frequencies of 0.001 Hz and 10 Hz.

Although outside of the vibratory frequency range, the response of the system at

frequencies below 0.01 Hz is shown to illustrate the ability of the ARIS to track station

motion in the very low frequency range. Since the second order filter used to

approximate the ARIS elliptic filter is a good approximator only up to 10 Hz, the ARIS

simulation predictions cannot be considered reliable at frequencies higher than this.

At frequencies below 0.01 Hz a transmissibility ratio of approximately one (zero

db) is maintained between the local off-board x-direction acceleration and the x-direction

acceleration of the rack center of mass. Furthermore, the phase angle between the off-

board x-direction input and the onboard x-direction acceleration is approximately zero
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degrees at frequencies below 0.003 Hz. This unity gain and zero phase angle is necessary

to maintain the sway space between the rack and the station. Low frequency oscillations

result in large relative displacements that could cause bumping between the station and

the rack. It should also be noted that the resonant peaks that were characteristic of the

passive system (Figure 12) have been eliminated by the ARIS, so that the acceleration

environment inside the rack would now satisfy the microgravity requirement, given the

predicted ISS environment shown in Figure 3.
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Figure 18: Transfer function between local off-board translational accelerations (inputs),

along orthogonal directions, and x-direction acceleration of the rack CM

(output).

113



rJ_
¢D

CaO

ID

150

100

5O

0

-50

-100

-150

............ ) ....... i .......\
"_ SOLID:X-DIRECTION INPUT

DASH: Y-DIRECTION IRPUT

'_. DOT: Z-DIRECTION

\
\

"_..

'...._ "-'_'--_...

• _ \\.

• ........................
10_ 10"_ 10"1 10° 101

Frequency (Hz)

Figure 19: Phase angle between local off-board translational accelerations (inputs), along

orthogonal directions, and x-direction acceleration of the rack CM (output).

Also noticeable from Figure 18 is that the coupling between off-board

accelerations in the body-fixed y and z directions and the rack CM acceleration in the x-

direction is very small in the portion of the frequency spectrum shown. Although

coupling mechanisms do exist in the physical system, the ARIS controller minimizes the

coupling effects through stiffness compensation. Although Figure 19 shows that the off-

board y- and z-direction signals are out of phase with those of the rack x-direction

acceleration at most frequencies, the minimal coupling effect and the fact that the inputs

are orthogonal to the output means that there is less concern of bumping than with the x-

direction off-board input. However, the chances of bumping between the rack and the

station are also dependent on the severity of the off-board acceleration environment in a

given direction.
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The inclusion of the Coriolis coefficients in the equations of motion can have a

large impact on the shape of the transfer functions for the y- and z-direction inputs. As a

conservative estimate of the effects of the Coriolis acceleration, the components of the

orbit rate resolved along the REF were all assumed to have a value of 1.1xl0 3 rad/sec,

which is the maximum value of the orbit rate along the y axis of the LVLH frame. The

resulting Coriolis coefficients were then put into the simulation for comparison to the

simulation results when the Coriolis effect was not included. The differences seen for the

transfer function associated with an x-direction input are negligible because the diagonal

terms in the translational damping matrix are dominant in comparison to the Coriolis

coefficients. However, the differences for the y-direction and z-direction inputs (x-

direction output) differ greatly from the results shown in Figure 17. In the frequency

range of 0.001 I-tz to 10 Hz, the gain is increased by as much as 40 db when the Coriolis

coefficients are included. However, the gain was never more than -80 db for the y- and z-

direction inputs. The phase comparison shows negligible differences for the x-direction

input result shown in Figure 18. However, the phase plots for the y- and z-direction

inputs are different by as much as 145 degrees from the results shown in Figure 18.

Based on these preliminary studies, it is important to be aware of the Coriolis effect if an

in-depth study into coupling, with regard to ARIS performance, is to be carried out.

Although there are nine possible combinations of orthogonal off-board

translational acceleration inputs and orthogonal translational accelerations of the rack

CM, only three of these combinations are presented. Using the simulation, transfer

functions and phase plots between the orthogonal off-board translational acceleration
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inputs and the y- and z-direction rack CM accelerations have been generated. These

results have similar characteristics to those shown in Figures 18 and 19.

Figure 20 shows the transfer function between angular accelerations at the

station/rack interface about the orthogonal directious of the rack's body-fixed frame and

the x-direction acceleration of the rack CM. Figure 21 shows the phase angles between

this set of inputs and the output. According to Eqs. (67) and (70), rotational inputs at the

station/rack interface transform into a combination oftramlational and rotational inputs at

the various umbilical and actuator connection points. Since the station/rack interface is

nearly coincident with the position of the rack CM, rotation of the station about the rack

body-fixed x and y directions takes advantage of the z-direction moment arm, so that

these rotations produce the largest translational inputs at the umbilical and actuator

connection points on the station. For this reason, the coupling between the theta-y input

and the x-direction output is the most significant.
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units rad/sec2), about orthogonal directions, and the x-direction acceleration
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Onboard Disturbance Attenuation

Figure 22 shows the ratio of the magnitude of the x-direction rack CM

acceleration to the magnitude of the onboard disturbance forces (in the orthogonal body-

fixed directions) as a function of frequency. Just as in the case for the passive system, the

onboard disturber is located in the upper corner of the ISPR, a location that maximizes

the torque input to the rack. Consideration of the response of the system to an x-direction

force input, and comparison of Figure 22 to Figure 14 shows that the resonant peaks

characteristic of the result for the passive system have been eliminated by the ARIS

controller. At a frequency of about 10 I-Iz, the transfer function levels out to an

attenuation of approximately -35 db, which is the decibel equivalent of the inverse of the

rack mass. Therefore, with onboard forcing frequencies in the neighborhood of 10 I-Iz,

the rack responds like a body floating in flee space. Figure 22 also shows that the x-

direction acceleration of the rack CM is highly decoupled from force inputs in the body-y

and body-z directions. The result shown in Figure 22 also typifies the acceleration

response of the system in the y and z directions. Although the results are not shown in

this paper, the y-direction (z-direction) rack CM acceleration is highly decoupled from

force inputs in the x and z (x and y) directions.
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9. ARIS Risk Mitigation Experiment

The ARIS Risk Mitigation Experiment (RME) was a flight test of the ARIS

carried out during shuttle mission STS-79. The purpose of the RME was to test the

functionality of the ARIS with respect to on-orbit operations and performance. A myriad

of tests were carried out during the flight and a portion of the data collected during these

tests may prove valuable in verifying the results of the ARIS simulation presented in this

paper. Therefore, one of the objectives of this research is to simulate the unique ARIS

configuration used during the RME so that comparisons between simulation results and

test data may be carried out.

The ARIS configuration used during R.ME differed significantly from the baseline

configurations planned for ISS. The most significant differences are as follows:

• The mass of the ISPR was significantly different than that of the various baseline
configurations.

• The umbilical assembly was changed during the experiment from a partial umbilical

configuration to a minimum umbilical configuration that possesses considerably less
translational stiffness.

• The ARIS controllaws used during RME were differentthan the baseline controller
planned for use on ISS.

• As a result of anomalous behavior of the ARIS during the RME, one of the eight

actuator pushrods was damaged and had to be removed. The ARIS operated with
seven pushrods during most of the testing.

The various configuration changes summarized above must be programmed into the

simulation if the RME results are to be compared to the results from the ARIS simulation.

A listing of the RME configuration parameters is given in Appendix B.
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9.1 Verification of the ARIS RME Configuration

Information on the AR/S R.ME configuration was collected from a number of

different sources including various RME written reports (cited parenthetically below) as

well as discussions with the ARIS developers and information presented at the latest

ARIS CDR (Marshall Spaceflight Center, November, 1996). Given that the ARIS RME

simulation was patched together from these various sources, it was considered prudent to

attempt to validate the RME simulation architecture to ensure that the correct controller

configuration and plant parameters were being used. The validation was carried out

through comparison of the results from the current simulation to the results from the

ARIS simulation being used by the Boeing Defense and Space Group. The ARIS

developers operate this simulation independently, using it to make predictions of system

performance for the R.ME and baseline ARIS configurations.

Several different controller versions were used during the RME and two of these

versions are presented in this paper. One type is termed a baseline robust controller that

utilizes a 2 *d order 8 Hz filter in the acceleration feedback loop in addition to the baseline

acceleration compensator. Also present in this configuration is an 8= order elliptic filter

set at 250 I--Iz. The second controller type is termed a high gain controller in which the

gain in the acceleration feedback loop is doubled, the 2 *a order filter is set at 40 Hz, and

the 8 = order elliptic filter is set at 25 Hz. Further, the high gain controller employs an

additional lag filter in the acceleration feedback loop.

Figure 23 shows the comparison of the current simulation results to those of the

Boeing simulation. The plot shows the predictions for the ARIS RME off-board
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attenuation capability as a function of frequency. The gain depicted in the plot is the ratio

(in decibels) of the x-direction acceleration of the rack center of mass to the off-board x-

direction acceleration at the station/rack interface. This comparison shows that the

current simulation is in acceptable agreement with the Boeing simulation and thus the

current simulation probably employs the most up-to-date models of the R_ME controllers

for both the high gain and baseline versions.
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Figure 23: Comparison of cun'ent simulation results (left) to Boeing simulation results

(fight) ofARIS RME off-board attenuation capability. Solid lines are baseline

robust controller predictions and dashed lines are high gain controller
predictions.

9.2 Comparison to RME Results

The comparison of simulation re_ts to the results obtained fi'om the RME are

currently limited to a small subset of the total data received from the experiment. For the

purpose of comparison here, the preprocessed data given in the final RME report were

utilized (Boeing Document #SK683-61855-1, STS- 79 Final Report RME-1313/ARIS,

December, 1996). Among a number of other results, the final R_ME report presented

single input single output (SISO) attenuation results from two different isolation tests.
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The SISO approach considers only one input/output combination at a time and assumes

that the only input that affects a given output is an input in the same direction as that

output. For example, it is assumed that the x-direction acceleration of the rack is affected

only by an x-direction acceleration onboard the station. Therefore all cross-coupling

between the six degrees of freedom is ignored. In reality this assumption is not strictly

valid but it does provide for a first-look comparison of results.

The results presented are those from an isolation test run that was carried out on

day 5 of the STS-79 mission. The batch file used for the test run was designated

B 1G B2.X. Further information on this test is documented in the _ Quick Look

Report (Boeing Document #SK683-62235, ARIS RME-1313 Quick Look Report, October,

1996) and the final R_ME report. The test was conducted with the high gain controller

configuration active, a minimum umbilical assembly, and the #8 actuator removed.

Furthermore, during this test run the ISPR was fully loaded with food logistics for MIR.

All of these conditions have been simulated for comparison to the test results.

Figures 24, 25, and 26 show comparisons between the predicted attenuation levels

of off-board disturbances and the isolation levels measured during the R.ME. Because the

isolation results were presented in the final RME report as average isolation levels across

1/3 octave band intervals, the predicted isolation levels from the current simulation have

been averaged over the same 1/3 octave bands. The average predicted attenuation levels

are plotted at the center frequencies of the various 1/3 octaves so that direct comparisons

between the prediction and the flight data can be made for each interval.

Valid isolation data from the RME were limited to a certain bandwidth because

the acceleration environment present on the Space Shuttle during STS-79 was below the
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noise floor of the accelcrometcrs in portions of the frequency spectrum. The region of the

spectrum in which the data are believed to be valid is taken to be the same for all three

directions, and ranges from approximately 0.04 Hz to 1.2 Hz. No comparisons were

made outside of this bandwidth.
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Figure 24: Comparison of current simulation x-direction SISO isolation prediction

(asterisk) to RME x-direction SISO isolation results (open symbol).'
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Figure 26: Comparison of current simulation z-direction SISO isolation prediction

(asterisk) to RME z-direction SISO isolation results (open symbol).

The x- and y-direction SISO predictions follow the trend of the flight data, but the

prediction and results diverge more and more with increasing frequency. Further, the z-

direction isolation during R_ME was not as good as that in the x and y directions and the
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simulation over-predicts the isolation by a considerable amount. For the case of the x-

and y-direction plots, some of the differences between the flight data and the prediction

are attributed to coupling from station inputs in other directions. This coupling effect can

be shown to become stronger with increasing frequency. The large differences between

the z-direction isolation levels measured during the RM_ and the z-direction isolation

predictions of the current simulation are not fully understood. In a communication from

The Boeing Company, it was suggested that the large differences may be accounted for

by the variation in stif_'-ness of the umbilicals throughout their range of motion. The

effective stiffness of the umbilicals in small amplitude motion is larger than that

associated with large amplitude motion, and this behavior is not accounted for in the

current simulation.

Further details on ARIS test results are given m Reference 11. This is also an

excellent reference for details on ARIS design studies, control methodology and hardware

configuration. The reference was authored by the ARIS developers from the Boeing

Defense and Space Group.
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10. Concluding Remarks

This paper details the development of a simulation capability for a microgravity

rack integrated with an ARIS kit. The current simulation is based on a Boeing simulation

capability for the ARIS. The computer-based model presented in this paper represents an

important first step in building a simulation tool, at the NASA Langley Research Center,

that may be utilized to augment technical knowledge of the ARIS and to make

attenuation performance predictions for various microgravity facility configurations. In

the hands of payload developers and microgravity scientists, this combination of

technical knowledge and quantitative predictions may lead to a higher level of science

return from the International Space Station.

The research documented in this paper is highly comprehensive in that it details

the effect of the orbital motion on the microgravity environment inside the rack while

also confronting the dynamics resulting from the umbilical and actuator assemblies,

disturbance sources internal to the rack, and the station environment at the station/rack

interface. Starting with a basic description of the Space Station and ISPR in orbit, an

energy-based method is applied to derive rigid-body equations of motion. By eliminating

second-order terms in the orbital equations of motion for the center of mass of the

composite system, it is found that the well known equations of motion for the two-body

problem can be realized. A forcing function appears on the right-hand side of these

equations due to external forces that are acting on the system. Based on this familiar

result, the orbital parameters of the system are considered known functions of time,

eliminating the need to integrate the orbital equations of motion. Furthermore, the
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external forces acting on the system are assumed to be constant in magnitude and

direction over the time interval of interest.

For the purpose of this study, the perturbed motion of station is assumed to be

predetermined because of th_ large mass ratio between the station and the rack. Using a

suitable set of generalized coordinates and the proper transformations, the perturbed

equations of motion for the microgravity rack are derived and the rack states used in these

equations are those meastnv, d by an observer fixed with respect to the system orbit.

Numerous terms are derived in the perturbed equations of motion, and many of these

represent orbitally-induced forces on the rack. This paper identifies, and describes in

detail, the various forces and torques acting on the microgravity rack. Furthermore, order

ofmagrtitude studies are used to identify those terms that may have a significant impact

on the microgravity environment inside the rack. For the most part, the coupling terms

between the bulk orbital motion of the system and the perturbed motion of the rack are

shown to be negligible on the microgravity scale. However, these terms could be

significant in the study of coupling effects between the various perturbed rack states.

The derivations presented in this paper are significant in that they establish a firm

understanding of the dynamical behavior of the rack in the context of its orbital motion

and its locally observed perturbed motion. If coupling terms between the orbital motion

and the local perturbed motion of the rack are omitted (and a quasi-equilibrium condition

is employed) then the locally observed motion is approximated by equations of motion

representing the equivalent inertial-based system. Significant quasi-steady, orbital-

induced accelerations are then added to the local perturbed acceleration to calculate the

total inertial acceleration of the rack.
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Using the equations of motion derived for the microgravity rack, a computer-

based simulation was developed in the SIMULINK environment. This environment

allowed the ARIS controller simulation to be interfaced easily with the rack model so that

a simulation of the entire closed-loop system could be constructed. With the ARIS

disconnected, the predicted response of the rack to both onboard and off-board

disturbances showed resonant behavior at various frequencies. This behavior will result

in noncompliance of the rack environment with the microgravity requirement. When the

AR/S is activated the simulation results predict that the resonant behavior is eliminated,

and a rnicrogravity environment is maintained inside of the rack.

A limited comparison is made between simulation performance predictions and

performance results from the ARIS RME. For the sake of comparison the assumption is

made that the translational acceleration of the rrficrogravity rack in a certain direction is

affected only by off-board inputs in the same direction. The x- and y-direction

attenuation predictions are more in agreement with the flight data than that of the z-

direction and all comparisons show that further tuning of the current model is necessary.
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APPENDIX A

A.1 Overview of Indieial Notation

Indicial notation is a bookkeeping tool for use in vector algebra. The principles

given on indicial notation in this appendix lay the groundwork for indicial notation as it

applies to this paper. For further information regarding indicial notation see reference 12.

1) If the quantity known as "vector a" is symbolized as _ and the quantity known as

"vector b" is symbolized as _, then:

The notation a_ 0=1,2,3) denotes the i t_component of _ and b_ denotes the is

component of b.

If the same indicial symbol appears twice in the same term, it is referred to as a

dummy index and a summation across this index is implied. Therefore, the dot

product of _ and 6 is given indicially as: _ • b ::::, a i b i

The indicial symbol sij_ is introduced as a permutation symbol that takes the value of

+l if the indices ijk are in cyclic order, -1 if they are in acyclic order, and zero if any

two of the three indices ijk are equal. The vector cross product can be represented

indicially as: _ x b :=> sb_ajb k

2) If the quantity known as "second order tensor A" is symbolized as _, then:

A

The tensor A may be written down as a 3x3 matrix.

Ii I! A12 AI3 l
A21 A22 A23

3, A32 A33

The notation Ai_ denotes the i'_, j'_ component of _, representing the element in the

ithrow andj "_column of the matrix representation for ,_.

A second order tensor is symmetric if A_j = Aji.

132



• A second order tensor is antisymmetric if A_ = 0 and Aij = -Aji.

For this study, the vector of an antisymmetric tensor B is defined as a vector with

1

components v k (k=1,2,3), and v k = _-sjikBij.

• For this study, the antisymmetric second order tensor of _ is given as B_j = s jav k .

Therefore, if

ivltE0v3vl= v 2 ,then B= v 3 0 -v !

V 3 --V 2 V 1 0

The last two definitions provided above differ fi'om those given in reference 12. In that

reference the definition of the components of _, the vector of an antisymmetric tensor,

are of opposite sign than that given above. For this study the definitions provided in this

appendix are used because they are better suited to represent the cross-product operation,

which is present in many of the developments presented in this paper.
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A.2 Final Indicial Form of the Lagrangian and the Dissipation Function

L=

1 L

+_ x_, f,_._ +arE._ _ _ rj +_kA0m,_r_;._ x .t L + un R x

i +_.i +l_ (rl;_ + .ax x x .R t. L L +iU=r.R +1"_ _.,AO_.,ri. _r_ r_+Ar/., . _.,

+ f2,..Qy. 0_.- I,.)A0y.

1 2 )A02x. 1 2+ _'(_y.-.Q:.XI,.-Iy. XI_.- I_.)A02y.

1 2 )A02+ n:.Xi,.-I,.

+_,.I,.At_,. + _"2y,Iy.AOy. + f2,.I,.A0_.

+ k"2z, Iy. A{_y. A0x. - _"2y.Iz. A0z. A0x ,

+ .Q,. (I_. - I=. )AO=.A0y. + n=.i,.A0=.A0y.

+ _y. (I,. -Iy. )A(},. A0,. + "_" 0"" -Iy. )A0y.A0 z.

1 -R R "R
+'_AOR,iIR,ijAORj

--1 x (ArRLi +r]g jL/REAAR _A1 -L rl g ?L/SEAITIS .]. L2 s _os.i.i',x "-"x.k S.i ----oS.ij'_ "-'"R.k ALos.i)" KTRN_.i=

2 N TORN.ij - AOs.j

134



+ L L + L L __L L L L +,_ L L -_-_lV_ r_r_ ar_ar_ +zr_r_ +2r_ar_ a_ar_

F_

(A-0

1Z
2N

Ai-L elL /L/REAhR __Ai.L _I-IIL ]L/SEAl, S ) LR,i + _oN.ij'jk "*_" R,k $.i _oN.ij'jk "_v R,k 1" CTRN N.im "

&_.L ,,]L /I.dREA_R -- Ai.:L II_L /I.,/SEAAS( R.= + _o_.=_',, "-'"R._ S._ -- _o_._'_, "-" R,)

1
+--Z (A0_._- A(J_.,)CTOR_._j(AfJ_..j- A0_.j)

2N

(A-2)
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APPENDIX B

Summary of System Parameters

Baseline Heavy Rack

Estimated Mass: M R= 54.9 slugs (1768 lbm)

Estimated Moment of Inertia Matrix (slug-_):

183.00 0 0.12 1[I_]= 0 194.99 - 7.15 /

0.12 - 7.15 8127]

Estimated Translational Umbilical Stiffness (lbf/ft) (no coupling predicted):

86.4 0 0 l
[KTRNt_ ] = 0 104.4 0

0 0 104.4

Estimated Torsional Umbilical Stiffness (Ibf-fl./rad) (no coupling predicted):

53.17 0 0 ]

J0 10927 0

0 0 78.6

RME Rack

Mass (measured on orbit with full load of logistics): MR = 27.6 slugs (888.72 Ibm)

Measured Moment of Inertia Matrix (slug-_):

I113.0 2.7 j

2.0

[I_]=[ 2.7 123 5.72.0 5.7 47
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TranslationalUmbilical Stiffness(on-orbitmeasurement) (lbf/ft):

-60.0

R

2.6
3.6 2.6 ]

47.2 0

0 443

Torsional Umbilical Stiffness (estimated from on-orbit measurement) (lbf-ft/rad):

"145.3 - 25.7 - 12.2_
/

-4.6 269.2 40.4 /
- 15.1 - 37_3 49.9 _]
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APPENDIX C

A Model for Rotating Equipment Disturbance

The majority of the oscillatory disturbances onboard the rack are due to the

operation of rotating equipment. The force and torque inputs to the rack are due to mass

imbalances in the machinery that result in a time rate of change of the linear and angular

momentum vectorassociatedwith therotatingmotion. Figure C-1 shows the diagram

used indeveloping the model forthisclassof disturbance.

I I

RACK

Figure C-I: Diagram ofthe Rotating Mass Imbalance Model

The model assumes that the total rotating mass imbalance is represented by the

point mass me, which rotates about an axis through point O. An axis system is assigned

so that the axes _ and _2 lie in the plane of rotation while the axis _3 is normal to the

plane of rotation and parallel to the angular velocity vector ft. The equipment is
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assumed to be hard-mounted to the rack and the axes _i, g2, and _3 are assumed fixed

relative to the rack body-fixed frame.

The total acceleration of the disturber mass relative to the rock center of mass is

- - ( ) (c-Da., = ao + c_x rp_o + _ x @ x rp,o

where 6 is the angular acceleration vector of the rotating mass about _ 3 and ao is the

acceleration of point O relative to the rack center of mass. The rotating equipment is

assumed to be operating in a steady-state condition so that 6 = 0. Furthermore, the

relative acceleration ao is considered small compared to the centripetal acceleration term.

Therefore, the only term retained is the centripetal acceleration term.

With respect to any rack body-fixed axis, the force input due to rotating

imbalances is oscillatory, with a frequency of f = _ Hz. If the magnitude of the

position vector rr_o is designated as e, the maximum possible amplitude of the force

input along any body-fixed axis is

(c-2)

In a document produced under contract for the Space Station program it is suggested that

the disturber mass nap be assigned a value of 0.5% of the total mass of the rotating part

and the imbalance radius, e, be given as 0.5% of the radius of the rotating part (Boeing

Missiles and Space Division and NASA, Boeing Document #1)683-28702-1,

Microgravity Disturbance Forcing Functions Issue A, 1996). As a final note, the vector

r_ is the same as that represented by the cohann vector {i:_ } given on the right hand

side of Eq. (73).
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APPENDIX D

Approximation for Umbilical and Actuator Damping

The damping matrices given in Eq. (73) pose a problem from a practical

standpoint because of the difficulty of making approximations for these quantifies. As a

first approximation, information on the damping quantity supplied by the ARIS

developers is utilized. The only information provided thus far is the value of _j, the

modal damping coefficient associated with thej '_ mode. To utilize this information, an

algebraic expression for the modal form of the equations must be derived so that the

physical damping quantity can then be backed out of the modal information provided.

Many of the developments in this appendix are informed by reference 13.

The general form of Eq. (73) can be interpreted as the equations of motion for a

damped harmonic oscillator subjected to base motion excitation as well as directly

applied disturbing forces. The condensed form of the equations for this system is

[M]{_} +[C]{x} +[KJ{x} = [C]{_,} +[K]{y} + {Fncrsgn_ } (D-l)

where the column vector {x} and its time derivatives are rack states and {y} and its time

derivative are station states.

The modal development begins with a consideration of the natural, undamped

equations of motion, given as

[M]{_} +[KI{x} = {0} (I:)-2)

A linear transformation of the form
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{x}--[z]{q}

is substituted into Eq. (D-2), which is then rewritten as

{ti}+[zl-'[MI-'[K][Z]{q}

(1)-3)

= {o} (D-4)

If the columns of [Z] are assumed to be the eigenvectors of the matrix product

[M]-_[K], then the eigenvalue problem of the following form is realized,

det([K]-XjtM])= (D-5){o}

where _,j is the eigenvalue associated with thej = eigenvector (j'_ column of [Z] ).

The orthogonality relation for the natural modes implies that the mass matrix can

be diagonalized with the j'_ eigenvector in the following fashion

{zj}r[M]{zi} = 0 (D-6)

and

{zj}r[M]{zj} = mj (D-7)

For convenience the eigenvectors are normalized as

where _j is the j'hcolum-n of a normalized eigenvector matrix [4]-

For the purpose of this study, it is assumed that the modal matrix diagonalizes the

damping matrix as well, so that

[,1 r[C][,] = dia_2_j(o j] (D-9)
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The ARIS developers assigned the damping factors a value of 0.015 for all modes. This

is the value currently used in the simulation presented in this paper and the damping

matrix is calculated in physical coordinates using

Eq. (D-10) has certain implications regarding the form of the physical damping

matrix. If an aggregate 6x6 stiffness matrix, incorporating translational and torsional

stiffness elements, is used to generate the eigenvalues and eigenvectors then the physical

damping matrix realized through Eq. (1)-10) is not of the same form as that given in Eq.

(73). The reason for this is that although the torsional stiffness quantity is confined to the

lower right-hand minor of the aggregate stiffness matrix, it effects all of the eigenvalues

and eigenvectors obtained from the eigenvalue problem in Eq. (1)-5). Therefore, all of

the terms in the physical damping matrix are affected when the physical damping is

approximated using Eq. (D-10). Although the validity of the assumption in Eq. (D-9)

(and therefore Eq. (D-10)) is in question no matter vchich form of the stiffness matrix is

used, it was decided to approximate damping using the eigenvalues and eigenvectors

from the undamped, unforced system incorporating the aggregate 6x6 stiffness matrix,

which is the summation of all actuator and umbilical stiffnesses, both translational and

torsional.

To maintain the same form of the 6x6 damping matrix given in Eq. (73), a

different approach is needed. In this approach, 2N equations of the form given in Eq. (D-

2) would be written. In each equation, the stiffness matrix would be different, and

represent the stiffness for one of the N elastic elements. For each elastic element, there
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would be two equations - one incorporating a 6x6 stiffness matrix for the translational

stiffness and one incorporating the torsional stiffness. Damping matrices would be

generated for each element individually using eigcnvalues and cigcnvcctors unique to that

particular element. The 2N physical damping matrices generated through Eq. (D-10)

would then be added together to fi'om an aggregate damping matrix for all of the

elements. Although this approach may be more intuitive, the validity of this

approximation over that described in the last paragraph is questionable.
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APPENDIX E

Transfer Functions of the ARIS Control Elements

Many of the control elements presented in the ARIS block diagram in Figure 15

are represented by superblocks, in which a number of individual blocks are grouped

together. In the case of such control elements as the Acceleration Compensator or the 40

Hz Second Order Filter the superblocks consist of an array of compensators. In the

Acceleration Compensator block there are six identical cascade compensator branches

(paths) and each of these operates on one of the translational or rotational acceleration

signals. The 40 Hz Second Order Filter block consists of eight identical compensator

branches, one for each of the eight accelemmeter signals. In the following listing, the

transfer functions found in each of the ARIS controller elements, for the baseline

production and RME versions, are presented. The block name is given along with the

number of control branches and the block-diagram form of the transfer functions within

the control element. In every case, the compensator for each branch or path in the given

control element is identical.
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TableE-1: Simulation Blocks for Baseline Production ARIS Controller Elements

Name of Block Number

of

Branches

Transfer Function and Configuration

(All Blanches Identical)

2 nd Order Approx. for

Elliptic Filter

(This approximating filter

was supplied by Boeing

Product Group 3 (PG-3).)

sZ_1131 s+3_84

40 Hz 2 nd Order
___ _3187 _1s2,355s+63167

Acceleration Compensator 6 1 20(s+0.04)(s+0.04) r (s+0.628)

Position Analog Filters 8

Position Filters 6
___.=.=._

Position Control 6

. .00394

(s+0.0628)(S+0.0628) I- _

, c___
su_ 1 t-_,,

Coefficients:
P=0
D=0

I=0018
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The ARIS controllers employed during the RME differed from the baseline

production controller shown above in several respects. With regard to the controller

elements considered in this appendix, the baseline robust controller used during the RME

utilized an 8 Hz second order filter in place of the 40 Hz second order filter used in the

baseline production controller. Furthermore, the baseline robust controller utilized a 250

I-Iz elliptic filter instead of the 25 Hz elliptic filter used in the production version. With

regard to the controller elements presented in this appendix, the R.ME high gain

controller differs from the AR/S production controller in that it incorporates an additional

lag filter in the acceleration feedback loop, downstream of the acceleration compensation.

Furthermore, the acceleration feedback loop gain is double the gain in the baseline

production version. Instead of using a second order filter to approximate the elliptic

filter elements, as is done in the simulation presented in Section 8.3, the R.ME

simulations use the full 8 t_ order transfer functions to simulate the elliptic controller

elements. All of the RME controller element variations described here are presented

below. With the exception of controller element variations described here, the RME

controllers are assumed to utilize controller elements identical to those presented for the

baseline production controller given above.
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Table E-2: RME Baseline Robust Controller Variations

Name of Block Number

of

Branches

Transfer Function and Configuration

(All Branches Identical)

8 Hz Second Order

250 Hz Elliptic

2524s2+71 s+2524

Table E-3: R.ME High Gain Controller Variations

Name of Block Number

of

Branches

Transfer Function and Configuration

(All Branches Identical)

Analog Filter 2

(Lag Filter)

8 s2.+15.72._-_.74 k .................._

25 Hz Elliptic 8
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APPENDIX F

MATLAB Code for Generating Simulation Parameters

The MATLAB code given in this appendix is mainly composed of several

different executable files received fi'om The Boeing Company in October, 1995. Since

the time at which this code was supplied, several ARIS design changes have taken place.

Therefore, the code should be considered applicable to the baseline design from late 1995

and must be corrected or modified in order to simulate specific ARIS racks currently

planned for use on the Space Station.
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% THIS PROGRAM GENERATES PARAMETERS FOR USE IN THE ARIS SIMULATION

% RACK BASELINE MASS PROPERTIES

% MASS (SLUGS)

MR=54.916;

% MOMENT OF INERTIA (SLUG-FT"2)

IR=[183, -0.0076831, 0.11565;

-0.0076831,194.99, -7.1478;

0.11565, -7.1478, 81.279];

% AGGREGATE MASS MATRIX

massmat=-zeros(6);

massmat(1:3,1:3)=[MIL0,0;0,MR,0;0,0,MR];

massmat(1:3,4:6)--zeros(3);

massmat(4:6,1:3)=zeros(3);

massmat(4:6,4:6)=IR;

mvmass--inv(massmat);

% BASELINE UMBILICAL STIFFNESS PROPERTIES

% (No Translational Coupling Pre_c_d)

kx=86.4;

ky=104.4;
kz=t04.4;

kxy=0;

kxz-q);

_=o;

%POSITION VECTOR OF THE CENTROID OF THE UMBILICAL CONNECTION, MEASURED

%RELATIVE TO THE CENTER OF MASS OF THE RACK, IN RACK EQUILIBRIUM
%COORDINATES (FT)

dvect=[-0.363, -0.342, -2.42];

% SECOND ORDER TENSOR ASSOCIATED WITH dvect

dtens=[0 -dvect(3) dvect(2); dvect(3) 0 -dvect(1); -dvect(2) dvect(1) 0];
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% CONSTRUCT 3X3 (UPPER LEFT) MINOR OF THE STIFFNESS MATR/X

Ktrfzeros(3);
K_ 1,1)=kx;

Ku'(2,2)fky;
KB-(3,3)=kz;

% TORSIONAL STIFFNESS (CALCULATED FROM BOEING-SUPPLIED INFORMATION)

Ktor=zeros(3);
Ktor(1,1)=53.17;

Ktor(2,2)=109.27;

Ktor(3,3)=78.56;

% CONSTRUCT 6X6 STIFFNESS MATRIX

Kumb--zeros(6);

Kumb(1:3,1:3)=Ktx;

Kumb(l:3,4:6)=Ktr*dtens';

Kumb(4:6,1:3 )=dtens*Ktr;

Kumb(4:6,4:6)=dtens'*Ktr*dtens+Ktor;

% EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH UMBILICALS ONLY
% AND

% APPROXIMATION OF PHYSICAL DAMPING MATRIX FOR UMBILICALS

[Vumb,Dumb]----eig(mvmass*Kumb);

%NORMALIZED EIGENVECTORS

massdiag=zeros(6);
massdiag=Vumb'*massmat* Vumb;

for i=1:6

phi_umb(:,i)=Vumb(:,i)/(massdiag(i,i))^0.5;
end

%APPROXIMATION FOR UMBILICAL DAMPING IN PHYSICAL COORDINATES

Cumb--inv(phi_umb')*2* 0.015 *Dumb/'0.5*mv(phi_umb);

% Check on umbilical damping geometry

Cumbc--zeros(6);

Ctr=Cumb(1:3,1:3);

Cumbc(l:3,1:3)=Ctr;,

Cumbc(1:3,4:6)=Ctr*dtens';
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Cumbc(4:6,1:3)=dtens*Ctr;
Cumbc(4:6,4:6)=dtens'*Ctr*dtens;

% ACCELEROMETER GEOMETRY

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

%clear msv

centocg=[O,O,O];

rhcad 1=[- 17.7 14.1 27.9]-centocg;

rhead2=[- 17.7 11.2 -31.5]-centocg;

rhead3=[ 17.7 11.2 -31.5]-centocg;

racc 1=(rhead 1 )/12;

racc2=(rhead1)/12;

racc3=(rhead2)/12;

mcc4=(rhead2)/12;
raccS=(rhead2)/12;

racc6=(rhead3)/12;

racc7=(rhead3)/12;

mcc8=(rhead3)/12;

pkia=O;

phib----pi/4;
phic=-pi/4;

ep=cos(phia);

sp=sia(phia);

ry=[ep 0 -sp;O 10;sp 0 ep];

accl=[sqrt(2)/2 sqrt(2)/2 0];

acc2=[-sqrt(2)/2 sqrt(2)/2 0];

accl=(ry*accl')';

acc2=(ry*acc2')';

cp=cos(phib);

sp=sm(phib);

rz=[cp -sp O;sp cp 0;0 0 1];

aec3=[sqrt(2)/2 0.5 0.5];

acc4=[-sqrt(2)/2 0.5 0.5];

acc5=[O - 1 1]/sqrt(2);
acc3=(rz*acc3')';

acc4=(rz*acc4')';

acc5=(rz*accS')';

ep_os(phic);
sp=sm(phic);

rz=[cp -sp O;sp cp 0;0 0 1];

acc6=[sqrt(2)/2 0.5 0.5];

acc7=[-sqrt(2)/2 0.5 0.5];

accS=[O - 1 1]/sqrt(2);
acc6=(rz*acc6')';

acc7=(rz*acc7')';
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acc8=(rz*acc8')';

maxl=O;

% ROTACC=[0.7071 -0.7071

% 0.7071 0.7071 0.8536
% 0.0000 0.0000 0.5000

% accl=(rotacc(:,l))';

% acc2=(rotacc(:,2))';

% acc3_(rotacc(:,3))';

% acc4_rotacc(:,4))';

% acc5_rotacc(:,5))';

% acc6=(rotacc(:,6))';

% acc7_rotacc(:,7))';

% accS=(rotacc(:,8))';

0.1464-0.8536 0.5000 -0.3000 -0.6660 //0.6830;

-0.1464 -0.5000 0.8124 -0.5536 //-0.1830;

0.5000 0.7071 0.5000 0.5000 //0.7071]

rot 1=cross(racc 1,acc 1);

rot2_cross(racc2,acc2);

rot3-_-u'oss(racc3,acc3);
rot4=cross(racc4,aec4);

rotS-_ross(racc5,acc5);

ro_oss(racc6,acc6);

rot7-_-ross(racc 7,acc 7);

rotS=cross(racc8,ac¢8);

rotacc=[accl' acc2' acc3' acc4' acc5' acc6' acc7' acc8']
M--[acc 1 rot1;

acc2 rot2;

acc3 rot3;

acc4 rot4;

acc5 rotS;
ace6 rot6;

ace7 rot7;

ace8 rot//];

for 1=1:8 ....

b=ey¢(8,8); ...
b(Ll)_O; ...

rrmew=b*M; ...

msv(l_ztm(svd(mn cw)); ...
end; ...

m__v

for k-=1:8 ....

for j--l:8 ....

b=eye(8,8); ...

b(Lk)_; ..
b(jj)=O; ...
rmaew-_b*M; ...

mmsv(j,k_aain(svd(mnew) ); ...
end; ...

en_
failms_v

mJnsv(l:2,I:2)=[lO 10;10 10]; ...

_(mimv);
zro= O*ones(1,3);
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Twtom=[acclzro zro;
acc2zro zro;
zro acc3zro;

_o acc4 zro;

zro ace5 zro;

zro zro ace6;

zro zro acc7;

zro zro accS]

lowl_to_nate=[0 - 1.008 0];

lowl to Ipivot=[-1.08-25.58 1.922];

lpivot_to mode=[20.5 -45.5 36.2];
nate_to__cg=[19.56-12.93 38.40];

modtocg = -lpivot_to_modc-lowl_to_lpivot+lowl_to_nate+nate_to_cg;

%pushrod flex joint point on actuator lever arm

rl =([- 17.8 47.2 -31.3]-modtocg)/12;

r2=([- 18.6 64.2 -29.7]-modtocg)/12;

r3=([17.8 47.2 -31.3]-modtocg)/l 2;

r4=([18.6 64.2 -29.7]-modtocg)/12;

r5=([13.2 68.6 -42.2]-modtocg)/12;

r6=([-13.2 68.6 -42.2]-modtocg)/12;

r7=([3.9 47.9 39.3]-modtocg)/12;
r8=([-3.9 47.9 39.3]-modtocg)/12;

tact = [rl' r2' r3' r4' r5' r6' r7' r8'];
%

%pushrod flex joint point at end of pushrod

rel=([-17.8 67.5 -42.6]-modtocg)/12;

re2=([ - 18.6 48.4 -42.4]-modtocg)/12;

re3=([17.8 67.5 -42.6]-modtocg)/12;

re4=([ 18.6 48.4 -42.4]-modtocg)/12;

re5=([0.9 59.6 -40.2]-modtocg)/12;
re6=([-0.9 59.6 -40.2]-modtoeg)/12;

re7=([lO.7 72.4 39.3]-modtocg)/12;

re8=([-lO.7 72.4 39.3]-modtocg)/12;

rend= [rel' re2' re3' re4' re5' re6' re7' re8'];
%

rd = rend - ract;

%

% pushrod unit vectors in rack coordinates
rdl norm---rd(:, 1)/norm(rd(:, 1));

rd2norm--rd(:,2)/norm(rd(:,2));

rd3norm--rd(:,3)/norm(rd(:,3));
rd4norm=rd(:,4)/norm(rd(:,4));

rd5norm---rd(:,5)/norm(rd(:,5));

rd6norm---rd(:,6)/norm(rd(:,6));

rd7norm--rd(:,7)/norm(rd(:,7));

rd8norm--rd(:,8)/norm(rd(:,8));
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rdnorm=[rdl norm rd2norm rd3norm rd4norm rdSnorm rd6norm rd7norm rd8norm];
%

% lever arm unit vector direction m rack coordinates

rarml=[O - 1.1 -2.8]'/3.00832;

raxm2=[O 1.5-2.6]'/3.0017;

rama3=[O - 1.1 -2.8]'/3.00832;

ratm4=[O 1.5-2.6]'/3.0017;

mrmS=[l.3 -2.7 0]'/2.99666;
rarm6=[- 1.3 -2.7 0]'/2.99666;

rarm7=[-2.8 1.2 0]'/3.0463;

farm8=[2.8 1.2 0]'/3.0463;
%

% eg to actuator hinge point vector
r=3/12;

rlo--rI-r*rarml';
r2o--r2-r*rarm2';

r3o--r3-r*mma3';

r4o---r4-r*raxm4';

rSo--r5-r*rarmS';
r6o----r6-r*rarm6';

r7o-----'r7-r*rarm7';
r8o---r8-r*rarm8';
%

% complete the right handed coordinate system
rz 1=cross(rarm I ',rd 1norm');

rz2=cross(rarm2',rd2norm');

rz3 =cross(ra_rm3',rd3norm');

r'z4=cross(ra_rm4',rd4norm');

rz5=cross(rarm5',rdSnorm');
m6=cross(rarm6',rd6norm');

rz7=cross(rarm7',rd7norm');

rz8=eross(rarm8',rd8norm');
%

% compute the transformation reaping vectors in local actuator
% centered coordinates to center of mass coordinates

rotl=[raxml rdlnorm rzl'];

rot2=[rarm2 rd2norm rz2'];

rot3=[mrm3 rd3norm rz3'];

rot4--[rarm4 rd4norm rz4'];
rot5--[rama5 rdSnorm rz5'];

rot6=[rarm6 rd6norm rz6'];

rot7--[rarm7 rd7norm rz7'];

rot8=[rarm8 rd8norm rzS'];

zero= O'ones(3);

tl= [rotl' zero;zero rotl'];

t2= [rot2' zero;zero rot2'];

t3= [rot3' zero;zero rot3'];

t4= [rot4' zero;zero rot4'];
t5= [rot5' zero;zero rot5'];

t6= [rot6' zero;zero rot6'];

t7= [rot7' zero;zero rot7'];

t8= [rot8' zero;zero rot8'];
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wr=[rlo' r2o' r3o' r4o' r5o' r6o' r7o' r8o'];
wt=- [tl t2 t3 t4 t5 t6 t7 t8];
m = 0;...

bigx= 0*ones(48,6);

bigxt = 0*ones(6,48);
%

for j= 1:8 ....

re(l,1) = 0;...

rc(2,2)= 0;...

rc(3,3)= 0;...

rc(1,2)= -wr(3,j);...

rc(1,3) = wr(2,j);...

rc(Z,3)= -wr(1j);...
re(2,1) = -re(I,2);...

re(3,1 )= -re( 1,3);...

re(3,2) = -rc(2,3);...

c= [eye(3) -re;zero eye_3)];...

for k=- 1:6;...

for 1= 1:6;...

t(k,1)=wt_l+m);...
¢lld,...

end,...

x= fie;...
t,

xt'= X _...

for k =- 1:6 ....

for 1= 1:6 ....

bigx(k+m,l)= x(k,1);...

bigxt(k,l+m)=xt(lc,1);...
clld,...

end,...

m= m÷6;...
end

% STIFFNESS MATRICES FOR ACTUATORS IN LOCAL COORDINATES

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)
*************************************************************************************

I 1--23.3/12;12=20.2/12;B=23.3/12;14=20.2/12;

15=15.4/12;16=15.4/12;17=25.4/12;18=25.4/12;
%

kl = .5/12;

k3= .5/12;

k4= .5/12;

lcp= .5/12;
%

ks 133 = (k3+k4)/(11 *11)+kp/(r*r);...

ksl=[(k3+k4)/(ll*ll), k3/r/ll, 0,

k3/r/ll, (kl+k.3)/(r*r), 0, 0,
0,

0,

0,

0,

0, 0, 0
0, kl/r

0, ks133 , k3/ll, -r*(k3+k4)/(ll*ll)+kp/r, 0
o, k3/11, k3, -r'Z3/11, 0
0,-r*(k3+k4)/(11 *ll)+kp/r, -r*k.3/ll, (r*r)*(k3+k4)/(ll*l 1)+k'p, 0

kl/r, O, O, O, kl];
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gain1= [-(k3+k4)/(ll*11), O, O, O, O, k4/ll

-k3/(r*lD, -kl/(r*r), O, O, O, o
O, 0 -(k3+k4)/(ll*ll), k4/11, -k'p/r, 0

O, O, -k3/ll, O, O, 0

O, O, r*(E3+k4)/(11*11),-r*k4/11, -kp 0

O, -kl/r, O, O, O, 0];

ks233= (k3+k4)/(L2 *12)+kp/(r *r);...

ks2=[(k3+k4)/(12*12), k3/r/12, O, O, O, 0

k3/r/12,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks233, k3/L2, -r*(k3+k4)/(12*12)+kp/r, 0
O, O, k3/12, k3, -r*lG/12, 0

O, O,-r*(k3+k4)/(12*12)+kp/r,-r'k3/12,(r*r)*(k3+k4)/(12*12)+kp,0

O, kl/r, O, O, O, kl];

gain2= [-(k3+k4Y02*12), O, O, O, O, k4:.2
-k3/(r*12), -kU(r*r), O, O, O, 0

O, 0 -(k3+k4)/(12*12), k4:12, -kp/r, 0
O, O, -k3/12, O, O, 0

O, O, r*(k3+k4)/(12*12),-r*k4/12,-kp 0

O, -kl/r, O, O, O, 0];

ks333= (k3+k4)/(13*13)+lcp/(r*r);...

ks3=[(k3+k4)/(13*13), k3/r/13, O, O, O, 0

k.3/r/13,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks333, k3/13, -r*(k3+k4)/(13*13)+kp/r, 0
O, O, k3/13, k3, -r'k3/13, 0

O, O, -r*(k3+k4)/(13*13)+kp/r, -r'k3/13, (r*r)*(k3+k4)/(13*13)+kp, 0
O, kl/r, O, O, O, kl];

gain3= [-(I¢3+I¢4)/(13"13),O, O, O, O, k4/13

-k3/(r*]3),-kl/(r*r),O, O, O, 0
O, 0 -(k3+k4)/(13*13), k4/13, -kp/r, 0
O, O, -k3/13, O, O, 0

O, O,r*(k3+k4)/(13*13),-r*k4/13,-kp 0

O, -kl/r, O, O, O, 0];

ks433= (k3+k4)/(14* 14)+kp/(r*r);...

ks4=[(k3+k4)/(14*14), k3/r/14, O, O, O, 0

k3/r/14,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks433, k3;14, -r*(k3+k4)/(14*14)+kp/r, 0
O, O, t¢3/14, k3, -1"1¢3/14, 0

O, O, -r*(k3+k4)/(14*14)+kp/r, -r'k3/14, (r*r)*(k3+k4)/(14*14)+kp, 0
O, kl/r, O, O, O, kl];

gain4= [-(k3+k4)/(14*14), O, O, O, O, k4/14
-k3/(r*14),-kl/(r*r),O, O, O, 0

O, 0 -(k3+k4)/(14*14), k4/14,-k'p/r, 0

O, O, -k3;14, O, O, 0

O, O, r*(k3+k4)/(14*14),-r*k4/14, -kp 0
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O, -kl/r, O, O, O, 0];

ks533= Od+k4)/(15*lS)+kp/(r*O;...

ks5=[(k3+k4)/(15*lS), ld/r/15, O, O, O, 0

k3/r/15,(kl+k3)/(r*r), O, O, O, kl/r

0, 0, ks533, k3115, -r*(k3+k4)/(15*15)+kp/r, 0

O, O, k3/15, k3, -r'k3/15, 0

O, O,-r*(k3+k4)/(15*15)+kp/r,-r'k3/15, (r*r)*(k3+k4)/(15*lS)+kp, 0

O, kl/r, O, O, O, kl];

gain5= [-(k3+k4)/(15*15), O, O, O, O, k4/15

-k3/(r*15), -kl/(r*r), O, O, O, 0

O, 0 -(k3+k4)/(15*lS), k4/15, -kp/r, 0
O, O, -k3/14, O, O, 0

O, O, r*(k.3+k4)/(15*lS),-r*k4/15, -kp 0

O, -kl/r, O, O, O, 01;

ks633= (k3+k4)/(16*16)+kp/(r*r);...

ks6=[(k3+k4)/(16*16), k3/r/16, O, O, O, 0

k3/r/16,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks633, k3/16, -r*(k3+k4)/(16*16)+kp/r, 0
O, O, k3/16, k3, -r'k3/16, 0

O, O, -r*(k3+k4)/(16*16)+kp/r, -r'k3/16, (r*r)*(k3+k4)/(16*16)+kp, 0
O, kl/r, O, O, O, kl];

gain6= [-(k3+k4)/(16*16), O, O, O, O, k4/16

-k3/(r*16), -kl/(r*r), O, O, O, 0

O, 0 -(k3+k4)/(16*16), k4/16, -kp/r, 0

O, O, -k3/16, O, O, 0

O, O, r*(k3+kn)/(16*16),-r*k4/16, -lop 0

O, -kl/r, O, O, O, 0];

ks733= (k3+k4)/(17*17)+kp/(r*r);...

ks7--[(k.3+k4)/(17*17), k3/r/17, O, O, O, 0

k.3/rfl7,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks733, k_3/17, -r*(k3+k4)/(17*17)+kp/r, 0
O, O, k.3/17, k3, -r'k3/17, 0

O, O, -r*(k3+k4)/(17*17)+kp/r, -r'k3/17, (r*r)*(k3+k4)/(17*17)+kp, 0
O, kl/r, O, O, O, kl];

gain7= [-(k3+k4)/(17*17), O, O, O, O, k4/17

-k3/(r*lT), -kl/(r*r), O, O, O, 0

O, 0 -(k3+k4)/(17*17), k4/17, -kp/r, 0
O, O, -k3/17, O, O, 0

O, O, r*(k3+k4)/(17*17),-r*k4f17, -kp 0

O, -kl/r, O, O, O, 0];

ks833= (k3+k4)/(18*18)+kp/(r*r);...

ks8=[(k3+k4)/(18*18), k3/r/18, O, O, O, 0

k3/r/18, (kl+k3)/(r*r), O, O, O, kl/r
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O, O, ks833, k3/18, -r*Oc3+k4)/(18*18)+kp/L 0
O, O, k3/18, k3, -z_k3/18, 0

0, 0, -r*(k.3+k4)/(18*18)+k-p/r, -r'k3/18, (r*r)*(k3+k4)/(18*18)+kp, 0

0, kl/r, 0, 0, 0, kl];

gain8= [-(k3+k4)/(18*18), 0, 0, 0, 0, k4/18

-k3/(r*18), -kl/(r*r), 0, 0, 0, 0

0, 0 -(k3+k4)/(18*18), k4/18, -k-p/r, 0
0, 0, -k3/18, 0, 0, 0

0, 0, r*(k3+k4)/(18*lS),-r*k4/18, -kp 0
0, -kl/r, 0, 0, 0, 0];

% AGGREGATE ACTUATOR STIFFNESS IN CENTER OF MASS COORDINATES

% (THIS SECTION PROVIDED BY AKIS DEVELOPERS)

zro= O*ones(6);...

bigk ffi [ksl zro _ro _rro zxo za'o zro _ro,

zro ks2 zro zro zro zro zro zro;
zro zro ks3 zro zro zro zro zro;

zro zro zro ks4 zro zro zro zro;

zro zro zro zro ks5 zro zro zro;

zro z_o zxo zro zro ks6 _ zro;

zro zro zrozro zroz_o ks7 zro;

zro zro zro zro zro zro zro ks8];

ks= bigxt*bigk*bigx;

gamx= gaml*t 1+gam2*t2+gam3*t3+gam4*t4+gamS*t5+gam6*t6+gam7*t7+gam8*t8;

%EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH LrMBILICALS AND ACTUATORS
% AND

%APPROXIMATION OF PHYSICAL DAMPING M_ATRIX FOR UMBILICALS AND ACTUATORS

%TOTAL STIFFNESS: UMBILICALS AND ACTUATORS

K=Kumb+ks;

[V,D]=eig(mv-mass*K);

%NORMALIZED EIGENVECTORS

massdiag=V'*massmat* V;

for i=1:6

phiC,i)=V(:,i)/(massdiag(i,i))"0.5;
end
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%APPROXIMATION FOR UMBILICAL AND ACTUATOR DAMPING IN PHYSICAL
COORDINATES

C=mvCoh/')*2* 0.015*D.A0.5*mv(phi);

%TRANSFORMATION FROM CONTROL INPUTS TO FORCE COMPONENTS
%FOR EXCITING FLEXIBLE MODES

% (THIS SECTION PROVIDED BY AILIS DEVELOPERS)

zro= 0*ones(3,1);

Tutow=[rdlnorm zro zro zro zro zro zro zro;
zro rd2norm zro zro zro zro zro zro

zro _o rd3norm zro _ zro zro =o;

=o =o =o rd4norm =o =o =o =o

zro zro zro zro rdSnorm zro zro zro

zro zro zro zro zro rd6norm zro zro

zro zro zro zro zro zro rd7norm zro

zro zro zro zro zro zro zro rd8norm]

%RESOLVE ACTUATOR FORCE DIRECTIONS ALONG RACK COORDINATES TO COMPUTE

%FORCEA_D TORQUE INPUTS FROM THE ACTUATORS

% (THIS SECTION PROVIDED BY AILIS DEVELOPERS)

[u 1,x]= crossudf(ract(:, 1)',rdlnorm');

[u2,x]= crossudf(ract(:,2)',rd2norm');

[u3,x]= crossudf(ract(:,3)',rd3norm');

[u4,x]= crossudf(ract(:,4)',rd4norm');
[u5,x]= crossudf(ract(:,5)',rdSnorm');

[u6,x]= crossudf(ract(:,6)',rd6norm');

[u7,x]= erossudf(ract(:,7)',rdTnorm');

[u8,x]= erossudf(ract(:,8)',rdSnorm');

Tutox = [rdlnorm rd2norm rd3norm rd4norm rd5norm rd6norm rd7norm rd8norm;

ul' u2' u3' u4' uS' u6' u7' u8' ]

%Simulate removal of #8 actuator on baseline

%Tutox(:,7)--zeros(6,1);

% RESOLVE RIGID BODY MOTION ALONG THE ACTUATOR PUSHRODS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

[x,y,rc 1]= crossudf(zro',ract(:, 1)');

[x,y,rc2]= crossudf(zro',ract(:,2)');
[x,y,rc3]= crossudf(zro',ract(:,3)');

[x,y,rc4]= crossudf(zro',ract(:,4)');
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[x,y,rc5]=ctossud_f(zro',ractC,5)');

[x,y,rc6]=crossudf(zro',ractC,6)');

[x,y,rc7]=crossudf(zro',ractC,7)');

[x,y,tc8]=crossudf(zro',ract(:,8)');

Txal= [eye(3)-rcl];
Txa2= [¢y¢(3) -rc2];

Txa3= [eye(3) -rc3];

Txa4= [eye(3) -rc4];

TxaS--- [eye(3)-rc5];

Txa6 = [eye(3) -rc6];

TxaT= [eye(3) -r¢7];

Txa8= [eye(3) -rc8];

Txtop= Tutow'* [Txa 1;Txa2;Txa3 ;Txa4;Txa5;Txa6;Txa7;Txa8 ]
xp= Txtop;

Tptox= mv(xp'*xp)*xp'

xp=Txtop;

Tptox=mv(xp'*xp)*xp';

% MAP RIGID BODY ACCELERATION TO ACCELEROMTER LOCATIONS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

rcl= [ -17.7 14.1 27.9 ]/12;
rc2= [ -17.7 11.2 -31.5]/12;

rc3= [ 17.7 11.2 -31.5 ]/12;

[x,y,rcc 1]= crossudf(rc 1,rc 1);

[x,y,rcc2]= crossudf(rc2,rc2);
[x,y,rcc3]= crossudf(rc3,rc3);

Txtow= [eye(3) -rccl;

eye(3) -rcc2;

eye(3) -rcc3]
Twtom

Txtom= Twtom*Txtow

Tmtox= pinv(Txtom)
checkXtoX= Tmtox*Txtom

% TRANSFORMATION OF ACCELERATION COMMANDS TO ACTUATOR COMMANDS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)
*************************************************************************************

[torl,xl,x2]= crossudf(ract(:, 1)',rd(:, 1)');

[tor2,xl,x2]= crossudf(ractC,2)',rd(:,2)');

[tor3,xl,x2]= crossudf(ractC,3)',rd(:,3)');

[tor4,xl,x2]= crossudf(ract(:,4)',rd(:,4)');

[torS,xl,x2]= crossudf(ractC,5)',rdC,5)');

[tor6,x 1,x2]= crossudf(ract(:,6)',rdC,6)');

[tor7,xl,x2]= crossudf(ractC,7)',rdC,7)');

[tor8,xl,x2]= crossudf(ract(:,8)',rd(:,8)');

ttor= [torl' tort tort tot4' torS' tor6' tort totS'];
fori= 1:8 ....

mag= norm(ttor(:,i));...
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t_oru(:,i)=t_or(:,i)/mag;...
end
Tdclxtou= [rdlnorm'ttoruC,l)'/norm(ractC,l));

rd2norm'ttoru(:,2)'/norm(ract(:,2));

rd3norm' ttoruC,3)'/norm(ractC,3));

rd4norm' ttoruC,4)'/norm(ractC,4));

rdSnorm' ttoruC,5)'/norm(ract(:,5));

rd6norm' ttoruC,6)'/norm(ract(:,6));

rd7norm'ttoruC,7)'/norm(ract(:,7));

rdZnorm' ttoruC,8)'/norm(ract(:,8))];

Tdclxtou=pinv(Tutox)

chcckxtox= Tutox*Tdelxtou

% AUXILLIARY PARAMETERS

twozeta=0.03*eye(6);

mtoR--0.08333*cyc(9);

cgx=0;

cgy---0;

cgz---0;

idm--massmat;

otto=eye(6,6);
ctmi=cyc(6,6);

ctmcg=[0, egz,-cgy;

-egz,0,egx;
cgy,-cgx,0];

ctm(1:3,4:6)---ctmcg;

ctmi(4:6, 1:3)=-ctmcg;

pk=zeros(6);

pk-_K;
w2=1.4;
for i=1:6

pk(i,i)--w2*w2 *massmat(i,i)-K(i,i);
end

Gain=l'eye(6);
Gainl =1 *eye(6);

%Position vector of the pth disturber, relative to the rack center of mass

rpvcct=[1.75,1.59,3.17];

rptens=[0,-rpvect(1,3),rpvect(1,2);

rpvect(1,3),0,-rpvect(1,1);

-rpvect(1,2),rpvect(1,1),0];
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% Set up Frequency vector from 0.001 to 20 He.

wmax=lO*6.28;

wmin=O.O01 *6.28;

wmin_pow=log 10(wmm);

wmax_.pow=log 10(wmax);

w=logspace(wm.in...pow,wmax_pow,300);
whz=w/6.28;

%disp('rack_or)
%[Aol,Bol, CoLDol]=li_od('raek_ol');

%[mag,phase]=bod 1(AoI, BoLCoLDol,7,w);

%magi(:, 1)-=log 10(mag);

%semilogx(whz,20*magl(:, 1));
%axis([.O01 10 -80 40])

for i=1:3

[Acl,Bel, CeLDcl]---lmmod('arts_cl');

[mag,phase]=bode(Acl, Bel, CeLDcl, i,w);
magl(:,i)-=log 10(mag);

PHASF_,(:,i)---'phase
end

semilogx(whz,20*magl( :, 1),'y',whz,20*magl(:,2),'y-',whz,20*magl(:,3 ),'y.');
axis([.001 10 -150 40]);
%figure

%semilogx(whz,PHASE(:, 1),'y',whz,PHASE(:,2),'y-',whz, PHASE(:,3 ),'y.');
%axis([.O01 10-180 180]);

%[AcLBcl, Ccl,Dcl]=liamod('aris_cl');

%[mag,phase]=bode(AcLBcl, CcLDcl,2,w);
%magl(:,2)=log 10(mag);

%PHASE(:, 1)--phase

%semilogx(whz,20*magl(:, 1),'.',whz,20*magl(:,2));
%axis([.O01 20 -80 20]);
%figure

%semilogx(whz,PHAS E( :, 1));

%axis([.001 20 -500 360])
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% THIS M-FILE GENERATES PHYSICAL PAKAMETERS FOR THE ARIS RME RACK

% RACK R_ME MASS PROPERTIES

% MEASURED MASS IN SLUGS (RSA LOGISTICS INCLUDED)

MR=27.6;

% MEASURED MOMENT OF INERTIA TENSOR (SLUG-FT"2)
% THIS IS FOR RACK WITH RSA LOGISTICS

IR=[113, 2.7, 2;

2.7, 123, 5.7;

2, 5.7, 47];

% AGGREGATE MASS MATRIX

massmat=zeros(6);

massmat(1:3,1:3)=[MR,0,0;0,MR,0;0,0,MR];

massmat(1:3,4:6)=zeros(3);

massmat(4: 6,1:3 )--zeros (3);
massmat(4:6,4:6)=IR;

invmass--inv(massmat);

% UMBILICAL AND ACTUATOR STIFFNESS PROPERTIES

% 0VmASLmED ON ORBIT)

% MINIMLM UlVfBILICAL STIFFNESS TEST RESULTS

Kmu=[64.5,3.6,2.6,4.5,- 194,31;

3.6,54.5,0,145,- 12,- 17;

2.6,0,49.2 ,-20,11,5;

4.5,145,-20,503,-29,-54;
-194,-12,11,-29,662,-86;

31 ,- 17,5,-54,-86,72.4];

% PAR'IZgL UMBILICAL STIFFNESS RESULTS

Kpu=[ 102,7.6,-3.1,9.6,-293,66;
7.6,81.6,-2.9,230,-21,-0.7;

-3.1,-2.9,81.3,-52,5.8,8;

9.6,230,-52,720,-66,- 18;
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-293,-21,5.8,-66,923,-l81;

66,-0.7,8,-I8,-18I,106];

% ACCELF__OlVI_TER GEOIVIETRY

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

%clear rosy

ccntocg=[O,O,O];

rhead 1--[- 17.7 14.1 27.9]-centocg;

rhe,ad2--[- 17.7 11.2 -31.5]-ccntocg;

rhead3=[ 17.7 11.2 -31.5]-ccntocg;
raccl=(rheadl)/12;

racc2=(rhcad1)/12;

racc3=(rhcad2)/12;
racc4=(rhead2)/12;

raccS=(rhcad2)/12;

racc6--(rhcad3)/12;

racc7=(rhcad3)/12;

racc8_rhead3)/12;

phia=O;

phib--pi/4;
phic=-pi/4;

cp=cos(phia);
sp=sin(phia);
ry=[cp 0 -sp;O I O;sp 0 c'p];

accl=[sqrt(2)/2 sqrt(2)/2 0];

acc2=[-sqrt(2)/2 sqrt(2)/2 0];
acc l=(ry*acc 1')';

acc2_ry*acc2')';

q,=cos(ph,_);
sp=sm(pta'o);
rz=[cp-spO;spcp 0;0 0 I];

acc3=[sqrt(2)/2 0.5 0.5];
acc4=[-sqrt(2)/2 0.5 0.5];

acc5=[O - 1 1]/sqrt(2);

acc3=(rz*acc3')';
acc4=grz*acc4')';

acc5=(rz*accS')';

cp=cos(phic);

sp=sin(phic);

rz=[cp -spO;sp ep 0;0 0 1];

aee6=[sqrt(2)/2 0.5 0.5];

ace7=[-sqrt(2)/2 0.5 0.5];

aec8=[O - 1 1]/sqrt(2);

aee6_rz*acc6')';
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accT=(rz*accT')';
accS=(rz*acc8')';
maxl=0;

%ROTACC=[0.7071-0.70710.1464-0.85360.5000
% 0.70710.70710.8536-0.1464-0.50000.8124
% 0.00000.00000.50000.50000.70710.5000
%aecl=(rotacc(:,l))';
% acc2=(rotacc(:,2))';

% aec3=(rotacc(:,3))';

% acc4=(rotacc(:,4))';

% aeeS=(rotaee(:,5))';

% aee6---(rotacc(:,6))';

% aec7=(rotaee(:,7))';

% ace8=(rotacc(:,8))';

-0.3_0

-0.5536

0.5000

-0.6660 //0.6830;

//-0.1830;

//0.7071]

rot 1=cross(race 1,ace 1);

rot2=eross(raec2,acc2);

rot3=eross(racc3,acc3);

rot4=cross(racc4,acc4);

rot5=eross(racc5,acc5);

rot6=cross(racc6,acc6);

rot7=cross(racc7,acc7);

rotS=cross(raceS,aceS);

rotaec=[accl' ace2' ace3' ace4' ace5' ace6' acc7' aceS']

M=[acc 1 rotl;
ace2 rot2;

ace3 rot3;

acc4 rot4;
ace5 rotS;

ace6 rot6;

ace7 rot7;

aec8 rotS];

for 1=1:8 ....

b=eye(8,8); ...

b(t,])=0; ...
nmew=b*M; ...

msv(l_--min(svd(nmew)); ...
end, ...

123.qY

for k-=1:8, ...

forj=l:8 ....

b=eye(8,8); ...

b(k,k)=0; ...
b(jj)=O; ...
rmaew=b*M; ...

minsv(j ,k)--rmn(svd(mnew)); ...

end, ...

end;
failmsv=mmsv

minsv(l:2,1:2)=[lO I0;I0 IO]; ...

mmmsv=mm(mimv);
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zro= 0*ones(l,3);

Twtom= [accl zro zro;

acc2 zro zro;

zro acc3 zro;

zro acc4 zro;

zro acc5 zro;

zro 2:ro acc6;

zro zro acc7;

zro zro acc8]

lowl to_nat_[O -1.008 0];

lowl_to_lpivot=[-1.08-25.58 1.922];
lpivotto._modc--[20.5 -45.5 36.2];

nate_to._cg=[19.56-12.93 38.40];

modtocg =-lpivot to modc-lowl to lpivot+lowl to hate+hate to cg;

%pushrod flex joint point on actuator lever arm

r 1=([- 17.8 47.2 -31.3]-modtocg)/12;

r2=([-18.6 64.2 -29.7]-modtocg)/12;

r3=([ 17.8 47.2 -31.3]-modtocg)/12;

r4---([ 18.6 64.2 -29.7]-modtocg)/12;

rS=([ 13.2 68.6 -42.2]-modtocg)/12;
r6=([-13.2 68.6 -42.2]-modtocg)/12;

r7=([3.9 47.9 39.3]-modtocg)/12;

r8=([-3.9 47.9 39.3]-modtocg)/12;

tact= [rl' r2' r3' r4' rS' r6' r7' rS'];
%

%pushrod flex joint point at end ofpushrod

re 1=([- 17.8 67.5 -42.6]-modtocg)/12;

re2=([- 18.6 48.4 -42.4]-modtocg)/12;

re3=([17.8 67.5 -42.6]-modtocg)/12;
reA=([ 18.6 48.4 -42.4]-modtocg)/12;

re5=([0.9 59.6 -40.2]-modtocg)/12;

re6---([-0.9 59.6 -40.2]-modtocg)/12;

re7=([lO.7 72.4 39.3]-modtocg)/12;

reS=([- 10.7 72.4 39.3]-modtocg)/12;

rend= [rel' re2' reY re4' re5' re6' re7' reS'];
%

rd = rend - ract;
%

% pushrod unit vectors in rack coordinates

rd Inorm=rd(:, 1)/norm(rd(:, 1));

rd2nonn----rd(:,2)/norm(rd(:,2));

rd3norm=rd(:,3)/norm(rd(:,3));
rd4norm=rd(:,4)/norm(rd(:,4));

rdSnorm---rd(:,5)/norm(rd(:,5));

rd6norm=rd(:,6)/norm(rd(:,6));

rd7norm=rd(:,7)/norrn(rd(:,7));
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rdSnorm=rd(:,8)/norm(rd(:,8));

rdnorm=[rdlnorm rd2norm rd3norm rd4norm rdSnorm rd6norm rd7norm rd8norm];
%

% lever arm unit vector direction in rack coordinates

rarml =[0 - 1.1 -2.8]'/3.00832;

mma2=[O 1.5 -2.6]'/3.0017;

rarm3=[O -I.1 -2.8]'/3.00832;

rann4=[O 1.5-2.6]'/3.0017;

minaS=[1.3 -2.7 0]'/2.99666;

rarm6-=[ - 1.3 -2.7 0]'/2.99666;

rarm7=[-2.8 1.2 0]'/3.0463;

rarm8=[2.8 1.2 0]'/3.0463;
%

% cg to actuator hinge point vector
r=3/12;

rlo----rl-r*rarml';

r2o----r2-r*mrm2';

r3o----r3-r*mxm3';

r4o--'-r4-r*rarm4';

r5o=r5-r*mrm5';

r6o---r6-r*rarm6';

r7o--r7-r*rarm7';

r8o='r8-r*rarm8';
%

% complete the right handed coordinate system

rz 1=ero ss(rarm 1',rd 1norm');
rz2=cross(rarm2',rd2norm');

rz3=cross(rarm3',rd3norm');

rz4=eross(m_rm4',rd4norm');

rz5 --_:ross(ra.nm5 ',rd5 norm');

m6-_oss(rarm6',rd6norm');

rz7=eross(rarm7',rd7norm');

rz8=cross(rarm8',rd8norm');
%

% compute the transformation reaping vectors in local actuator
% centered coordinates to center ofma_ coordinates

rotl=[rarml rdlnorm rzl'];

rot2=[m.,m2 rd2norm rz2'];
rot3=[mnn3 rd3norm r-z3'];

rot4=[rarm4 rd4norm rz4'];

rot5=[rarm5 rd5norrn rz5'];

rot6=[rarm6 rd6norm rz6'];

rot7=[rarm7 rd7norm rz7'];

rot8=[rarm8 rd8norrn rz8'];

zero= O*ones(3);

tl = [rotl' zero;zero rotl'];

t2= [rot2' zero;zero rot2'];

t3= [rod' zero;zero rot3'];
t4 = [rot4' zero;zero rot4'];

t5= [rot5' zero;zero rot5'];

t6= [rot6' zero;zero rot6'];

t7= [rot7' zero;zero rot7'];
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t8=[rot8' zero;zero rot8'];

wr= [rlo' r2o' r3o' r4o' rSo' r6o' r7o' r8o'];

wt= [tl t2 t3 t4 t5 t6 t7 tS];
m = 0;...

bigx= O*ones(48,6);

bigxt "=O*ones(6,48);
%

forj = 1:8 ....

rc(1,1)= 0;...

rc(2,2)= 0;...

rc(3,3)= 0;...

rc(1,2)= -wr(3,j);...

rc(1,3)= wr(2,j);...

rc(2,3) = -wr(1 j);...

rc(2,1)= -rc(1,2);...

rc(3,1)= -re(I,3);...

rc(3_2)= -rc(2,3);...

c= [eye(3) -rc;zero eye(3)];...

for k=- 1:6;...

for 1= 1:6;...

t(k,1)=wt0ql+m);...
end,...

elxd,...

x= t'c;...

xt = x';...

for k= 1:6 ....

for 1-- 1:6 ....

bigx(k+m,1)-- x(k,1);...

bigxt(k,l+m)= xt(k,l);...

_d,...

Crtd,...

m = m+6;...
end

% STIFFNESS MATRICES FOR ACTUATORS IN LOCAL COORDINATES

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

11=23.3/12;I2=20.2/12;13=23.3/12;14=20.2/12;

15= 15.4/ 12;16= 15.4/12 ;17=25.4/ 12;18=25.4/12;
%

kl= .5/12;

k3= .5/12;

k4= .5/12;

kl_ .5/12;
%

ks133= (k3+k4)/(ll*ll)+kp/(r*r);...
ksl=[(k3+k4)/(ll*ll), k3/r/ll, O,

k3/r/ll, (kl+k3)/(r*r), O, O,
O,

O,

O,
O,

O, O, 0

O, kl/r

O, ks133 , k3/ll, -r*(k3+k4)/(ll*ll)+kp/r, 0

O, k3/ll, k3, -r*k3/ll, 0

0, -r*(k3+k4)/(11 *1 !)+k'p/r, -r*k3/l 1, (r*r)*(k3+k4)/(l 1*11)+kp, 0

kl/r, 0, 0, 0, kl];
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gaml=[-(k3+k4)/(11*11),O, O, O, O,k4/11
-k3/(r*ll), -kl/(r*r), 0, 0, 0, 0

O, 0 -(k.3+k4)l(ll*ll), k4/11, -k-p/r, 0
O, O, -k3/11, O, O, 0

O, O, r*(k3+k4)/(ll*ll),-r*k4/ll, -kp 0

O, -kl/r, O, O, O, 0];

ks233= (k3+k4)/(12 *12)+kp/(r*r);...

ks2=[(k3+k4)/(12*12), k3/r/12, O, O, O, 0

k3/r/12,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks233, k3/12, -r*(k3+k4)/(12*12.)+kp/r, 0
o, o, _a2, k3, -r*_a2, o
O, O,-r*(k3+k4)/(12*12)+k'p/r,-r'k3/12, (r*r)*(k3+k4)l(12*12)+kp, 0

O, kl/r, O, O, O, kl];

gain2= [-(k3+k4)/(12*12), O, O, O, O, k4/12
-k3/(r*t2), -kl/(r*r), o, o, o, o

O, 0 -(k3+k4)/(12*12), k4/12, -kp/r, 0

0, 0, -k3/12, 0, 0, 0

O, O, r*(k.3+k4)/(12*12),-r*k4/12, -kp 0

O, -kl/r, O, O, O, 0];

ks333= (k3 +k4)/(13" 13)+kp/(r*r);...

ks3=[(k3+k4)/(13*13), k3/r/13, O, O, O, 0

k.3/r/13, (kl+k3)/(r*r), O, O, O, kl/r

O, O, ks333, k.3/13, -r*(k3+k4)/(13*13)+lcp/r, 0
O, O, k3/13, k3, -r'k3/13, 0

O, O,-r*Oc.3+k4)/(13*13)+lcp/r, -r'k3/13, (r*r)*(k3+k4)/(13*13)+k'p, 0

O, kl/r, O, O, O, kl];

gain3= [-&3+k4)/(t3*B), O, O, O, O, k4/13
-_/(r*t3), -kl/(r*r), O, O, O, 0

O, 0 ffk3+k4)/(13*13), k4/13,-kp/r, 0

0, 0, -k3/B, 0, 0, 0

O, 0, r*0c3+k4)/(B*B),-r*k4/13,-kp 0
0, -kl/r, 0, 0, 0, 0];

ks433= (k3+k4)/(14 *14)+kp/(r*r) ;...

ks4=[Oc.3+k4)/(14*14), k3/r/14, O, 0, O, 0

k3/ff14, (kl+k3)/(r*r), O, O, O, kl/r
O, O, ks433, k3f14, -r*(k3+k4)/(14*14)+kp/r, 0

O, O, k3/14, k3, -r*k3/]4, 0

O, O, -r*(k3+k4)/(14*14)+kp/r, -r'k3/14, (r*r)*(k3+k4)/(14*14)+lcp, 0

O, kl/r, O, O, O, kl];

gain4= [-(k3+k4)/(14*14), O, O, O, O, k4/14

-k3/(r*14), -kl/(r*r), O, O, O, 0

O, 0 -(k3+k4)/(14*14), k4/14, -kpir, 0
O, O, -k3f14, O, O, 0
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O_

O,
O, r*(k3+k4)/(14*14),-r*k4/14, -kp 0

-kl/r, O, O, O, 0];

ks533= (kS+k4)/(t_*lS)+kp/(r*r);...

ks5=[(k3+k4)/(15*15), k3/r/15, O, O, O, 0

k3/r/15, fkl+k3)/(r*r), O, O, O, kl/r

O, O, ks533, k3/15, -r*(E3+k4)/(15*15)+kp/r, 0
O, O, k3/15, k3, -r'k3/15, 0

O, O,-r*(k3+ka)/(15*lS)+kp/r,-r'k3/15, (r*r)*(k3+k4)/(15*lS)+lcp, 0
O, kl/r, O, O, O, kl];

gainS= [-(k3+k4)/(15*lS), O, O, O, O, k4/15
-k3/(r*15), -kl/(r*r), O, O, O, 0

O, 0 -(_3+k4)/(15"15), k4/15,-k'p/r, 0
o, o, -k3a4, o, o, o
O, O, r*(k.3+k4)/(15*lS),-r*k4/15, -kp 0
O, -kl/r, O, O, O, 0];

ks633- (k-3+k4 )I(16 *16)+k'p/(r*r) ;...

ks6---[Oc.3+k4)/(16*16), k3/r/16, O, O, O, 0

k.3/r/16,(kl+k.3)/(r*r), O, O, O, kl/r

O, O, ks633, k3/16, -r*(k3+k4)/(16*16)+k-p/r, 0
o, o, _n6, _, -r*k3n6, 0
O, O, -r*(k3+k4)/(16*16)+kp/r, -r'k3/16, (r*r)*(k3+k4)/(16*16)+kp, 0
O, kl/r, O, O, O, kl];

gam6 = [-(k.3+k4)/(16*16), O, O, O, O, k4/16

-k3/(r*16), -kl/(r*r), O, O, O, 0

O, 0 -(k.3+k4)/(16*16), k4/16, -kp/r, 0

O, O, -k3/16, O, O, 0

O, O, r*(k3+k4)/(16*16),-r*k4/16, -kp 0

O, -kl/r, O, O, O, 0];

ks733= (k3+k4)/(17*17)+k'p/(r*r);...

ks7=[(k3+k4)/(17*17), k3/r/17, O, O, O, 0

k3/r/17,(kl+k3)/(r*r), O, O, O, kl/r

O, O, ks733, k3/17, -r*(k3+k4)/(17*17)+kp/r, 0

O, O, k3/17, k3, -r'k3/17, 0

O, O, -r*(k3+k4)/(17*17)+lcp/r, -r'k3/17, (r*r)*(k3+k4)/(17*17)+kp, 0
O, kl/r, O, O, O, kl];

gain7-- [-(k.3+k4)/(17*17), O, O, O, O, k4/17
-k3/(r*17), -kl/(r*r), O, O, O, 0

O, 0 -(k3+k4)/(17*17), k4/17, -lop/r, 0
O, O, -k3/17, O, O, 0

O, O, r*(k3+k4)/(17*17),-r*k4/17, -lcp 0

O, -kl/r, O, O, O, 0];

ks833= (k3 +k4)/(18 *lS)+kp/(r*r);...

ks8=[(k3+k4)/(18*lS), k3/r/18, O, O, O, 0
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k3/r/18,(kl+k3)/(r*r),0, 0, 0, kl/r
0, 0, ks833, k3/18,-r*(k3+k4)/(18*lS)+kp/r,0
0, 0, k3/18, k3, -r*k.3/18, 0

0, 0, -r*fk3+k4)/(18*18)+kp/r, -r'k3/18, (r*r)*(k.3+k4)/(18*18)+k'p, 0
0, kl/r, 0, 0, 0, kl];

gain8= [-(k_3+k4)/(18*18), 0, 0, 0, 0, k4/18

-k3/(r*18), -kl/(r*r), 0, 0, 0, 0

0, 0 ffk3+k4)/(18*lS), k4/18,-kp/r, 0

0, 0, -k3/18, 0, 0, 0

0, 0, r*(k3+k4)/(18*lS),-r*k4/18, -kp 0

0, -kl/r, 0, 0, 0, 0];

% AGGREGATE ACTUATOR STIFFNESS IN CENTER OF MASS COORDINATES

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

zro= 0*ones(6);...

bigk= [kslzrozrozro zro zrozro zro;

zro ks2 zro zro zro zro z_o zro;

zro zro ks3 zro zro zro zro zro;

zro zro zro ks4 2a-ozIozro zzo;

zxo zro zro zro ks5 zro zro zro;
zro zro zro zro zro ks6 zro zro;

zro zro zro zro zro zro ks7 zro;

zro zro zro zro zro zro zro ks8];

ks= bigxt*bigk*bigx;

gamx= gain l*t 1+gam2*t2+gam3*t3+gam4*t4+gam5*t5+gam6*t6+gam7*t7+gam8*t8;

%TRANSFORMATION FROM CONTROL INPUTS TO FORCE COMPONENTS FOR EXCITING

%FLEXIBLE MODES

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

zro= 0*ones(3,I);

Tutow= [rdlnorm zro zro zro zro zro zro
zro rd2norm zro zro zro zro zro zro

zro zro rd3norm zro zro zro zro zro;

zro zro zro rd4norm zro zro zro zro

zro zro zro zro rd5norm zro zro zro

zro zro zro zro zro rd6norm zro zro

zro zro zro zro zro zro rd7norm zro

m'o zro _o z:ro zro zro zro rd8norm]

zro;
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%RESOLVE ACTUATOR FORCE DIRECTIONS ALONG RACK COORDINATES TO COMPUTE
%FORCE

% AND TORQUE INPUTS FROM THE ACTUATORS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

[u 1,x] = erossud._raet(:, 1)',rd 1norm');

[u2.,x]= crossudf(ract( :,2)',rd2norm');

[u3,x]= erossudf(raet(:,3)',rd3 norm');

[u4,x]= erossudf(ract(:,4)',rd4norm');

[uS,x]=erossuaf(raet(:,5)',raSnorm');
[u6,x]= erossudf(raet(:,6)',rd6norm');

[u 7,x]= erossudf(raet( :,7)',rd7norm');

[uS,x]= erossudf(raet(:,8)',rdSnorm');

Tutox= [rdlnorm rd2norm rd3norm rd4norm rd5norm rd6norm rd7norm rdSnorm;
ul' u2' u3' u4' u5' u6' uT' uS' ]

Tutox(:,7_'zeros(6,1);

% RESOLVE RIGID BODY MOTION ALONG THE ACTUATOR PUSHRODS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

[x,y,rc 1]= cro ssudf(zro',raet(:, 1)');

[x,y,rc2]= erossudf(zro',ract(:,2)');

[x,y_rc3]= crossudf(zro',raet(:,3)');
[x,y,re4]= erossudf(zro',ract(:,4)');

[x,y,re5]= erossudf(zro',raet(:,5)');
[x,y,re6]= erossudf(zro',raet(:,6)');

[x,y,rc7]= crossudf(zro',ract(:,7)');

[x,y,rcS]= erossudf(zro',ract(:,8)$;

Txal= [eye(3) -rcl];

Txa2= [eye(3) -rc2];

Txa3= [eye(3) -re3];
Txa4= [eye(3) -rc4];

Txa5= [eye(3) -rcS];

Txa6-= [eye(3) -re6];

Txa7-- [eye(3) -rc7];

Txa8= [eye(3) -re8];

Txtop= Tutow'*[Txal ;Txa2;Txa3;Txa4;Txa5;Txa6;Txa7;TxaS]
Txtop;

Tptox= inv(xp'*xp)*xp'

xp=Txtop;

Tptox--mv(xp'*xp) *xp';

% MAP RIGID BODY ACCELERATION TO ACCELEROMTER LOCATIONS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)
*************************************************************************************

rcl= [ -17.7 14.1 27.9 ]/12;

re2= [ -17.7 11.2 -31.51/12;

rc3= [ 17.7 11.2 -31.5 ]/12;

[x,y,rcc 1 ]= crossudf(rc 1,re 1);
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[x,y,rcc2]= crossudf(rc2,rc2);

[x,y,rcc3]= crossudf(rc3,rc3);

Txtow= [eye(B) -rccl;

eye(B) -rcc2;

eye(B) -rcc3]
Twtom

Txtom= Twtom*Txtow

Tmtox= pinv(Txtom)
checkXtoX = Tmtox*Txtom

% TRANSFORMATION OF ACCELERATION COMMANDS TO ACTUATOR COMMANDS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

[torl,xl,x2]= crossudf(ract(:, 1)',rd(:, 1)');

[tor2,xl,x2]-- crossudf(raet(:,2)',rd(:,2)');

[tor3,xl,x2]= crossudf(ract(:,B)',rd(:,3)');

[tor4,xl,x2]= crossudf(ract(:,4)',rd(:,4)');

[torS,xl,x2]= crossudf(ract(:,5)',rd(:,_)');
[tor6,xl,x2]= crossudf(ract(:,6)',rd(:,6)');

[tor7,xl,x2] = erossudf(ract(:,7)',rd(:,7)');

[torS,xl,x2]= crossudf(ract(:,8)',rd(:,8)');

ttor= [torl' tor2' tot3' tor4' tory tow torT' tor8'];
for i= 1:8,...

mag= nonn(ttor(:,i));...

ttom(:,i)= ttor(:,i)/m_g;...
end

Tdelxtou= [rd lnorm' ttom(:, 1)'/norm(ract(:, 1));

rd2norm' ttom(:,2)'/norm(ract(:,2));

rdBnorm' .oru(:,3 )'/norm(tact(:,3));
rd4norm' ttom(:,4)'/norm(raet(:,4));

rdSnorm' ttoru(:,5)'/.orm(raa(:,5));

rd6-orm' ttom( :,6)'/norm(raet( :,6) );

rdTnorm' ttom(:,7)'/norm(ract(:,7));

rdSnorm' ttoru(:,8)'/norm(ract(:,8))];

Tdelxtou= pmv(Tutox)
checkxtox = Tutox*Tdelxtou

% ESTIMATION OF STIFFNESS QUANTITIES FOR THE ENTIRE SYSTEM

%POSITION VECTOR OF THE CENTROID OF THE UMBILICAL CONNECTION, MEASURED

%RELATIVE TO THE CENTER OF MASS OF THE RACK, IN RACK EQUILIBRIUM

%COORDINATES (FT)

dvect=[-0.363, -0.342, -2.42];

% SECOND ORDER TENSOR ASSOCIATED WTTH dvect

dtens=[0 -dvect(3) dvect(2); dvect(3) 0 -dvect(1);-dvect(2) dvect(1) 0];
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%ESTIMATIONOFSTIFFNESSP_ FROM MEASURED STIFFNESS ON ORBIT

%USE MINIMUM UMBILICAL DATA FROM DIAGONAL OF UPPER LEFT MINOR TO COMPUTE
6-DOF STIFFNESS MATRLX

%SUBTRACT ACTUATOR STIFFNESS

kx--Kmu(1,1)-ks(l, 1);

kyfKmu(2,2)-ks(2,2);

kz=Kmu(3,3)oks(3,3);

kxyffiKmu(1,2)-ks(1,2);
kxzffi-K.mu(1,3)-ks(1,3);

kyzffiKmu(2,3)-ks(2,3 );

Ktrfzeros(3);
Ktr(1,1)fkx;

K_2,2)ffiky;

Ktz(3,3)=kz;

Kn_ 1,2)ffikxy;

Ktr(1,3)ffikxz;

KU-(2,1)=Ku-(1,2);

K_2,3)=k-yz;
Ktt(3,1)=Ktr(1,3);

Ktr(3,2)--Ku'(2,3);

Ktanb---zeros(6);

Kumb(1:3,1:3)ffiKta';

Kumb(1:3,4:6)=-Ktr*dtens;
Kumb(4:6,1:3 )-_ltelas*Ktr;

Kumb(4:6,4:6)=-dtens*Ktr*dtans;

% COMPUTE ESTIMATED TOTAL UMBILICAL CONTRIBUTION TO LOWER RIGHT MINOR

KLRffiKmu(4:6,4:6)-ks(4:6,4:6);

% COMPUTE ESTIMATED TORSIONAL STIFFNESS OF THE UlVIBILICALS

Ktor=zeros(3);

Ktor=KLR-Kumb(4:6,4: 6);

Kumb(4:6,4:6)=Kumb(4:6,4:6)+Ktor;

%KfKumb+K_;

%EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH UMBILICALS AND ACTUATORS
% AND

%APPROXIMATION OF PHYSICAL DAMPING MATRIX FOR UMBILICALS AND ACTUATORS

%TOTAL STIFFNESS: UMBILICALS AND ACTUATORS

K=Kmu;
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['V,D]=eig(mvmass*K);

%NORMALIZEDEIGENVECTORS

massdiag=V'*massmat*V;

for i=1:6

phi(:,i)=vc,i)/(massdiag(i,i))"0.5;
end

%APPROXIMATION FOR UMBILICAL AND ACTUATOR DAMPING IN PHYSICAL

COORDINATES

C--inv(phi')*2*0.015*D/'0.5*inv(phi);

% AUXILLIARY PARAMETERS

twozeta=0.03*eye(6);

mtoft-_.08333*eye(9);

%Decoupling Parameters
%These are for the B 1G B2 test

%cg Decouplmg (f-t)

cgx=0.015;

cgy=0.02;

cgz--_.065;

idm---massmat;

ctm=eye(6,6);

cmxi=eye(6,6);

etmcg=[O, cgz,-cgy;

-cgz, O,cgx;
cgy,-cgx,O];

ctm(1:3,4:6)=ctmcg;

ctmi(4:6,1:3)=-ctmcg;

pk=zeros(6);

pk-_K;
w2=1.4;
for i=1:6

pk(i,i)---w2*w2 *massmat(i,i)-K(i,i);
end

% Off-diagonal (rotational) stiffness cancellation matrix
% elements set to zero for RME

pk(4,5)=0;

pk(4,6)=0;

pk(5,4)=0;

pk(5,6)=0;
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C_mm=l*eye(6);
G-ain1= l'eye(6);

%Position vector of the pth disturber, relative to the rack center of mass

rpvect=[ 1.75,1.59,3.17];

rptens=[0,-rpvect(1,3),rpvect(1,2);

rpvect(1,3),0,-rpvect(1,1);

-rpvec¢(1,2),rpvect(1,1),O];

% P_tting Routines

% Closed-loopState-spacerealization:Continuous"IF

wflogspace(-3,2,150);

whz=w/6.28;

[Acl,Bcl, Ccl,Dcl]=linmod('rme_clh');

[mag,phase]=bode(Acl,Bcl, Ccl,Dcl,3,w);

maglh=log 10(mag)

%semilogx(whz,20*maglh(:,l))
%gr_d

%axis([.o011o-6o1o])

%[Acl, Bcl, Ccl,Dcl]=liamod('rme_clb');

%[mag,phase]=bo&(Acl,Bcl, Ccl,Dcl, l,w);
%maglb=log 10(mag);

%semilogx(whz,20*maglh(:,l),'y_',whz,20*maglb(:, 1),'y')
%gr_d
%axis([.001 l0-6O 10])

% Set up vector to hold border frequencies of the 1/3
% octave bands. Start at 6 Hz.

wtob=zeros(13,1);

sz wtob=size(wtob);
wtob(1)=6.00000000;

%Find starting and ending points for 1/3 octave breakdown
for i= l:sz_wtob(1,1)-l;

wtob(i+ 1)--wtob(i)/2;
end

%Find border points for the 1/3 octaves over full
%bandwidth

pow_teni=log 10(wtob(13));

pow_tenf=log 10(wtob(1));

wbord=logspace(pow_teni, pow_tenf, sz_wtob( 1,1)'3-2)';
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%Compute center freqencies of 1/3 octave bands

wcf-=zeros((sz_wtob-1)'3,1);
for i=l:(sz_wtob-1)*3

wcf(i)=(wbord(i)+wbord(i+ 1))/2;

end

%Average Transfer Funcdon over 1/3 Octaves

counr=zeros((sz_wtob-1)'3,1);
magtot=zeros((sz_wtob-1)'3,1);
magave--zeros((sz_wtob- 1)'3,1);

%sort data into 1/3 octave bands and average

for i=1:150

for j--l:(sz wtob-1)*3
ff whz(i)>=wbordO) & whz(i)<--wbord(j+ 1)

magtotO_magtotO)+mag(i);
coun_)=coun_)+l;
end

end

end

for j= 1:(sz_wtob- 1)'3

magave(j _magtot(j)/cotmt0);

maglave(j)=log 10(magave0));
end

%x-dir at'ten, m dB from page 126

gnx=[-6.25 ,-8.74,-8.125,- 12.5 ,- 13.75 ,- 16.9,- 18.8,- 18.8,-22,-22.5,-25 ,-27.5,-28.1 ,-28.8,-30.6];

%y-dir atten, from page 127

gny=[-6.5,-9.4,-11.8,-13.5,-14.7,-16.3,-17.6,-21.2,-22.9,-24-1,-22-4,-24-7,-31-8,'29-4,'30-6];

%z-dir arten, from pg. 128
gnz=[-8.75,-6.25__8.1__8.8_-_2.5_-13.__-16.3___6.3__17.3_-_7_-18.1__2_.3_-23.8__22__23._]

semilogx(wc f,20*maglave,'*',wcf(15:29),gnz,'o');

axis([.ool 10-60 lo])

for i--1:3

[Acl,Bcl, Ccl,Dcl]=lixmaod('rme_clh');

[mag,phase] --bode(Acl,Bcl, Ccl,Dcl,i,w);

magl(:,i)--log 10(mag);
PHASE(:,i)=phase
end

semilogx(whz,20*magl(:,l),'y',whz,20*magl(:,2),'Y--',whz,20*magl(:,3),'Y-');

axis([.O01 10 -150 40]);
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